Skip to main content

Introduction to Group Analysis and Invariant Solutions of Integro-Differential Equations

  • Chapter
Symmetries of Integro-Differential Equations

Part of the book series: Lecture Notes in Physics ((LNP,volume 806))

  • 1657 Accesses

Abstract

In this chapter an introduction into applications of group analysis to equations with nonlocal operators, in particular, to integro-differential equations is given. The most known integro-differential equations are kinetic equations which form a mathematical basis in the kinetic theories of rarefied gases, plasma, radiation transfer, coagulation. Since these equations are directly associated with fundamental physical laws, there is special interest in studies of their solutions.

The first section of this chapter contains a retrospective survey of different methods for constructing symmetries and finding invariant solutions of such equations. The presentation of the methods is carried out using simple model equations of small dimensionality, allowing the reader to follow the calculations in detail. In the next section, the classical scheme of the construction of determining equations of an admitted Lie group is generalized for equations with nonlocal operators. In the concluding sections of this chapter, the developed regular method of obtaining admitted Lie groups is illustrated by applications to some known integro-differential equations.

The method is a technique which I have applied twice.

Maxim of a traditional professor in mathematics.

G. Polya

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The complete study of local Maxwellian solutions of (2.2.1) done in [21].

  2. 2.

    Some generalizations of the Bobylev approach were also done in [24].

  3. 3.

    More impressive simplification the Fourier transform gives for the full Boltzmann equation with Maxwell molecules: the five-fold collision integral is reduced to a two-fold integral [7]. Unfortunately for other power-like molecular potentials Fourier transform does not give simplifications [33].

  4. 4.

    The invariance of the Boltzmann equation with isotropic Maxwell molecular model with respect to semigroup (2.2.31) was discovered in [50] but it was not used by the author for constructing invariant solutions and for a long time this result was lost.

  5. 5.

    The authors of BKW-mode [42] used a much more long and intricate approach.

  6. 6.

    It is worth to note that the Fourier transform of the Boltzmann equation and the explicit solution rediscovered in [6, 7, 42] were first derived in unknown MS thesis of R. Krupp (see Ref. [15]).

  7. 7.

    This Lie group coincides with the group obtained by using the scaling conjecture (compare with (2.2.51)).

  8. 8.

    This equation coincides with the equation obtained in [66] for the moment generating function of power moments of the original distribution function.

  9. 9.

    Complete calculations using the regular method are presented in the next section.

  10. 10.

    This solution is usually considered as invariant solution with respect to transformations corresponding to the subalgebra {X 2−X 3+c −1 X 1} which is similar to {X 1+X 3}.

  11. 11.

    See Chap. 1 for details.

  12. 12.

    See also [11].

  13. 13.

    Definitions of an admitted Lie group of partial differential equations are discussed in [47], Chap. 6, Sect. 1, [55], Sect. 2.6, [35], Sect. 1.3, [36] (see also Chap. 1), Sect. 9.2, [62], [49], Sect. 6.1 and references therein.

  14. 14.

    According to the Cartan–Kähler theorem, after a finite number of prolongations the system (S) becomes either involutive or incompatible. Therefore, from the theory of compatibility point of view, there is no necessity for infinite prolongations of the system (S).

  15. 15.

    For the sake of simplicity only a Lie group of point transformations is discussed. For tangent transformations the study is similar.

  16. 16.

    There are some trivial examples of such applications for integro-differential equations.

  17. 17.

    See, for example, [9].

  18. 18.

    This solution is usually considered as invariant solution with respect to the subalgebra {X 2−X 3+c −1 X 1} which is similar to {X 1+X 3}.

  19. 19.

    These conditions are boundary conditions, rather than initial conditions.

  20. 20.

    They are called degenerate kernels.

References

  1. Abraham-Shrauner, B.: Exact, time-dependent solutions of the one-dimensional Vlasov–Maxwell equations. Phys. Fluids 27(1), 197–202 (1984)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  2. Balesku, R.: Statistical Mechanics of Charged Particle. Wiley, London (1963)

    Google Scholar 

  3. Bobylev, A.V.: The method of Fourier transform in the theory of the Boltzmann equation for Maxwell molecules. Dokl. Akad. Nauk SSSR 225, 1041–1044 (1975)

    MathSciNet  ADS  Google Scholar 

  4. Bobylev, A.V.: On exact solutions of the Boltzmann equation. Dokl. AS USSR 225(6), 1296–1299 (1975)

    MathSciNet  ADS  Google Scholar 

  5. Bobylev, A.V.: A class of invariant solutions of the Boltzmann equation. Sov. Phys. Dokl. 21(11), 632–634 (1976)

    ADS  Google Scholar 

  6. Bobylev, A.V.: Exact solutions of the Boltzmann equation. Sov. Phys. Dokl. 21(12), 822–824 (1976)

    ADS  Google Scholar 

  7. Bobylev, A.V.: On one class of invariant solutions of the Boltzmann equation. Dokl. AS USSR 231(3), 571–574 (1976)

    MathSciNet  ADS  Google Scholar 

  8. Bobylev, A.V.: On exact solutions of the nonlinear Boltzmann equation and its models. In: Struminsky V. (ed.) Molecular Gasdynamics, pp. 50–54. Nauka, Moscow (1982)

    Google Scholar 

  9. Bobylev, A.V.: Exact solutions of the nonlinear Boltzmann equation and relaxation theory of the Maxwellian gas. Theor. Math. Phys. 60(2), 280–310 (1984)

    Article  MathSciNet  Google Scholar 

  10. Boltzmann, L.: Further studies on the thermal equilibrium among gas-molecules. Collected Works 1, 275–370 (1872)

    Google Scholar 

  11. Buckwar, E., Luchko, Y.: Invariance of a partial differential equation of fractional order under the Lie group of scaling transformations. J. Math. Anal. Appl. 227, 71–97 (1998)

    Article  MathSciNet  Google Scholar 

  12. Bunimovich, A.I., Krasnoslobodtsev, A.V.: Invariant-group solutions of kinetic equations. Meh. Zidkosti Gas. (4), 135–140 (1982)

    Google Scholar 

  13. Bunimovich, A.I., Krasnoslobodtsev, A.V.: On some invariant transformations of kinetic equations. Vestn. Moscow State Univ., Ser. 1., Mat. Meh. (4), 69–72 (1983)

    Google Scholar 

  14. Carleman, T.: Problemes Mathematiques Dans la Theorie Cinetique des Gas. Almqvist & Wiksell, Uppsala (1957)

    Google Scholar 

  15. Cercignani, C.: Exact solutions of the Boltzmann equation. In: Modern Group Analysis: Advanced Analytical and Computational Methods in Mathematical Physics, pp. 125–136. Kluwer Academic, Dordrecht (1993)

    Chapter  Google Scholar 

  16. Chapman, S., Cowling, T.G.: The Mathematical Theory of Non-uniform Gases. Cambridge University Press, Cambridge (1952)

    Google Scholar 

  17. Chesnokov, A.A.: Characteristic properties and exact solutions of the kinetic equation of bubbly liquid. J. Appl. Mech. Tech. Phys. 44(3), 336–343 (2003)

    Article  MathSciNet  ADS  Google Scholar 

  18. Chetverikov, V.N., Kudryavtsev, A.G.: A method for computing symmetries and conservation laws of integro-differential equations. Acta Appl. Math. 41, 45–56 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  19. Chetverikov, V.N., Kudryavtsev, A.G.: Modelling integro-differential equations and a method for computing their symmetries and conservation laws. Amer. Math. Soc. Transl. 167, 1–22 (1995)

    MathSciNet  Google Scholar 

  20. Cohen, A.: An Introduction to the Lie Theory of One-Parameter Groups, with Applications to the Solutions of Differential Equations. Health, New York (1911)

    Google Scholar 

  21. Cornille, H.: Oscillating Maxwellians. J. Phys. A, Math. Gen. 18, L839–L844 (1985)

    Article  MathSciNet  ADS  Google Scholar 

  22. Dorodnitsyn, V.A.: Group Properties of Difference Equations. Fizmatlit, Moscow (2001) (in Russian)

    MATH  Google Scholar 

  23. Ernst, M.H.: Exact solution of the non-linear Boltzmann equation for Maxwell models. Phys. Lett. A 69(6), 390–392 (1979)

    Article  MathSciNet  ADS  Google Scholar 

  24. Ernst, M.H.: Exact solutions of the nonlinear Boltzmann equation. J. Stat. Phys. 34(5/6), 1001–1017 (1984)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  25. Ferziger, J.H., Kaper, H.G.: Mathematical Theory of Transport Processes in Gases. North-Holland, Amsterdam (1972)

    Google Scholar 

  26. Gazizov, R.K., Kasatkin, A.A., Lukashchuk, A.Y.: Symmetries and group-invariant solutions of nonlinear fractional differential equations. Phys. Scr. 227 (2009). Topical articles: Fractional Differentiation and Its Applications (FDA 08) (Ankara, 5–7 November 2008)

    Google Scholar 

  27. Grad, H.: On the kinetic theory of rarefied gases. Commun. Pure Appl. Math. II, 331–407 (1949)

    Article  MathSciNet  Google Scholar 

  28. Grigoriev, Y.N., Meleshko, S.V.: Investigation of invariant solutions of the Boltzmann kinetic equation and its models. Preprint of Institute of Theoretical and Applied Mechanics (1986)

    Google Scholar 

  29. Grigoriev, Y.N., Meleshko, S.V.: Group analysis of the integro-differential Boltzmann equation. Dokl. AS USSR 297(2), 323–327 (1987)

    ADS  Google Scholar 

  30. Grigoriev, Y.N., Meleshko, S.V.: Group analysis of kinetic equations. Russ. J. Numer. Anal. Math. Model. 9(5), 425–447 (1995)

    MathSciNet  Google Scholar 

  31. Grigoriev, Y.N., Meleshko, S.V., Sattayatham, P.: Classification of invariant solutions of the Boltzmann equation. J. Phys. A, Math. Gen. 32, 337–343 (1999)

    Article  ADS  Google Scholar 

  32. Grigoryev, Y.N.: A class of exact solutions of one nonlinear kinetic equation. Dyn. Contin. (26), 30–43 (1976) (in Russian)

    Google Scholar 

  33. Grigoryev, Y.N., Mikhalitsyn, A.N.: A spectral method of solving Boltzmann’s kinetic equation numerically. U.S.S.R. Comput. Math. Math. Phys. 23(6), 105–111 (1985)

    Article  Google Scholar 

  34. Ibragimov, N.H.: Transformation Groups Applied to Mathematical Physics. Nauka, Moscow (1983). English translation: Reidel, Dordrecht (1985)

    Google Scholar 

  35. Ibragimov, N.H. (ed.): CRC Handbook of Lie Group Analysis of Differential Equations, vols. 1, 2, 3. CRC Press, Boca Raton (1994, 1995, 1996)

    Google Scholar 

  36. Ibragimov, N.H.: Elementary Lie Group Analysis and Ordinary Differential Equations. Wiley, Chichester (1999)

    MATH  Google Scholar 

  37. Ibragimov, N.H., Kovalev, V.F., Pustovalov, V.V.: Symmetries of integro-differential equations: a survey of methods illustrated by the Benney equations. Nonlinear Dyn. 28(2), 135–153 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  38. Kac, M.: Foundation of kinetic theory. In: Proc. 3rd Berkeley Sympos. Math. Stat. and Prob., vol. 8, pp. 171–197 (1956)

    Google Scholar 

  39. Korn, G.A., Korn, T.M.: Mathematical Handbook. McGraw–Hill, New York (1968)

    Google Scholar 

  40. Kovalev, V.F., Krivenko, S.V., Pustovalov, V.V.: Group symmetry of the kinetic equations of the collisionless plasma. JETP Lett. 55(4), 256–259 (1992)

    ADS  Google Scholar 

  41. Krasnoslobodtsev, A.V.: Gasdynamic and kinetic analogies in the theory of vertical nonuniform shallow water. In: Proceedings of Institute of General Physics of USSR Ac Sci

    Google Scholar 

  42. Krook, M., Wu, T.T.: Formation of Maxwellian tails. Phys. Rev. Lett. 36(19), 1107–1109 (1976)

    Article  ADS  Google Scholar 

  43. Krook, M., Wu, T.T.: Exact solutions of the Boltzmann equation. J. Phys. Fluids 20(10), 1589–1595 (1977)

    Article  ADS  MATH  Google Scholar 

  44. Kupershmidt, B., Manin, Y.: Long wave equation with free boundary. i Conservation laws and solutions. Funct. Anal. Appl. 11(3), 188–197 (1977)

    Article  MathSciNet  Google Scholar 

  45. Landau, L., Teller, E.: Theory of sound dispersion. Phys. Z. Sowjetunion 34(10), 34–43 (1936)

    Google Scholar 

  46. Lebowitz, J., Montroll, E.: Nonequilibrium Phenomena I. The Boltzmann Equation. North-Holland, Amsterdam (1983)

    MATH  Google Scholar 

  47. Lie, S., Scheffers, G.: Lectures on Differential Equations with Known Infinitesimal Transformations. Teubner, Leipzig (1891)

    Google Scholar 

  48. Maxwell, J.C.: On the dynamical theory of gases. Philos. Trans. R. Soc. Lond. 157, 49–88 (1867)

    Article  Google Scholar 

  49. Meleshko, S.V.: Methods for Constructing Exact Solutions of Partial Differential Equations. Springer, New York (2005)

    MATH  Google Scholar 

  50. Morgenstern, D.: Analytical studies related to the Maxwell–Boltzmann equation. J. Ration. Mech. Anal. 4(4), 533–555 (1955)

    MathSciNet  MATH  Google Scholar 

  51. Nikolskii, A.A.: The simplest exact solutions of the Boltzmann equation of a rarefied gas motion. Dokl. AS USSR 151(2), 299–301 (1963)

    Google Scholar 

  52. Nikolskii, A.A.: Three dimensional homogeneous expansion–contraction of a rarefied gas with power interaction functions. Dokl. AS USSR 151(3), 522–524 (1963)

    Google Scholar 

  53. Nikolskii, A.A.: Homogeneous motion of displacement of monatomic rarefied gas. Inz. J. 5(4), 752–755 (1965)

    Google Scholar 

  54. Nonenmacher, T.F.: Application of the similarity method to the nonlinear Boltzmann equation. J. Appl. Math. Phys. (ZAMP) 35(9), 680–691 (1984)

    Google Scholar 

  55. Olver, P.J.: Applications of Lie Groups to Differential Equations. Springer, New York (1986)

    Book  MATH  Google Scholar 

  56. Ovsiannikov, L.V.: Group Analysis of Differential Equations. Nauka, Moscow (1978). English translation by Ames, W.F. (ed.), published by Academic Press, New York (1982)

    Google Scholar 

  57. Özer T.: Symmetry group classification of two-dimensional elastodynamics problem in nonlocal elasticity. Int. J. Eng. Sci. 41(18), 2193–2211 (2003)

    Article  MATH  Google Scholar 

  58. Polya, G.: Mathematics and Plausible Reasoning. Princeton University Press, Princeton (1954)

    Google Scholar 

  59. Polyachenko, V.L., Fridman, A.M.: Equilibrium and Stability of Gravitating Systems. Nauka, Moscow (1976)

    Google Scholar 

  60. Rabotnov, Y.N.: Elements of Hereditary Solid Mechanics. Nauka, Moscow (1977)

    Google Scholar 

  61. Sedov, L.I.: Similarity and Dimensional Methods in Mechanics. Academic Press, New York (1959)

    MATH  Google Scholar 

  62. Seiler, W.M.: Involution and symmetry reductions. Math. Comput. Model. 25(8/9), 63–73 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  63. Senashov, S.I.: Group classification of viscoelastic bar equation. Model. Meh. 4(21)(1), 69–72 (1990)

    MathSciNet  Google Scholar 

  64. Taranov, V.B.: On symmetry of one-dimensional high frequency motions of collisionless plasma. J. Tech. Phys. 46(6), 1271–1277 (1976)

    Google Scholar 

  65. Taranov, V.B.: Symmetry extensions and their physical reasons in the kinetic and hydrodynamic plasma models. SIGMA 4, 006 (2008) (7 pages)

    MathSciNet  Google Scholar 

  66. Tenti, G., Hui, W.H.: Some classes of exact solutions of the nonlinear Boltzmann equation. J. Math. Phys. 19(4), 774–779 (1978)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  67. Teshukov, V.M.: Hyperbolicity of the long-wave equations. Dokl. Akad. Nauk SSSR 284(3), 555–562 (1985)

    MathSciNet  Google Scholar 

  68. Teshukov, V.M.: Simple waves on a shear free-boundary flow of an ideal incompressible fluid. J. Appl. Mech. Tech. Phys. 38(2), 211–218 (1997)

    Article  MathSciNet  ADS  Google Scholar 

  69. Teshukov, V.M.: Spatial simple waves on a shear flow. J. Appl. Mech. Tech. Phys. 43(5), 661–670 (2002)

    Article  MathSciNet  ADS  Google Scholar 

  70. Teshukov, V.M.: Spatial stationary long waves in shear flows. J. Appl. Mech. Tech. Phys. 45(2), 172–180 (2004)

    Article  MathSciNet  ADS  Google Scholar 

  71. Voloshchuk, V.M.: Kinetic Coagulation Theory. Gidrometeoizdat, Leningrad (1984)

    Google Scholar 

  72. Whittaker, E.T., Watson, J.N.: A Course of Modern Analysis. I. Cambridge University Press, Cambridge (1927)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yurii N. Grigoriev .

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Grigoriev, Y.N., Ibragimov, N.H., Kovalev, V.F., Meleshko, S.V. (2010). Introduction to Group Analysis and Invariant Solutions of Integro-Differential Equations. In: Symmetries of Integro-Differential Equations. Lecture Notes in Physics, vol 806. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3797-8_2

Download citation

Publish with us

Policies and ethics