Skip to main content

CCN3 (NOV): A Negative Regulator of CCN2 (CTGF) Activity and an Endogenous Inhibitor of Fibrosis in Experimental Diabetic Nephropathy

  • Chapter
  • First Online:
CCN Proteins in Health and Disease

Abstract

The fibrosis that occurs in the kidney is a common complication of diabetes, and a major cause of end stage renal disease (ESRD). Our laboratory has been active in identifying factors responsible for its initiation. However, a lack of understanding of the downstream regulatory pathways has prevented development of specific anti-fibrotic therapies. CCN2 (CTGF) has emerged as a critical molecule acting downstream of TGF-β to drive fibrosis, making it an exciting new therapeutic target. However, suppression of CCN2 has been difficult. In this study, we examined the possibility that CCN3 (NOV), might act as an endogenous negative regulator of CCN2 with the capacity to limit the overproduction of extracellular matrix (ECM), and thus prevent, or ameliorate fibrosis. We demonstrate, using an in vitro model of diabetic renal fibrosis, that both exogenous treatment and transfection with the over-expression of the CCN3 gene in mesangial cells markedly down-regulates CCN2 activity and blocks ECM over-accumulation stimulated by TGF-β. Conversely, TGF-β treatment reduces endogenous CCN3 expression and increases CCN2 activity and matrix accumulation, indicating an important, novel yin/yang effect. Using the db/db mouse model of diabetes, we confirm the expression of CCN3 in the kidney, with temporal localization that supports these in vitro findings. In summary, the results support our hypothesis that CCN3 has a negative regulatory action on CCN2 and the effects of TGF-β, acting to limit ECM turnover and fibrosis in vivo. The findings suggest opportunities for novel endogenous-based therapy either by the administration, or the upregulation of CCN3.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdel-Wahab N., Weston B.S., Roberts T., Mason R.M. (2002). Connective tissue growth factor and regulation of the mesangial cell cycle: role in cellular hypertrophy. J Am Soc Nephrol 13(10): 2437–2445.

    Article  PubMed  Google Scholar 

  • Bollineni J.S., Reddi A.S. (1993). Transforming growth factor-beta 1 enhances glomerular collagen synthesis in diabetic rats. Diabetes 42(11): 1673–1677.

    Article  CAS  PubMed  Google Scholar 

  • Breyer M.D., Bottinger E., Brosius F.C., 3rd, Coffman T.M., Harris R.C., Heilig C.W., et al. (2005). Mouse models of diabetic nephropathy. J Am Soc Nephrol 16(1): 27–45.

    Article  PubMed  Google Scholar 

  • Brigstock D.R., Goldschmeding R., Katsube K.I., Lam S.C., Lau L.F., Lyons K., et al. (2003). Proposal for a unified CCN nomenclature. Mol Pathol 56(2): 127–128.

    Article  CAS  PubMed  Google Scholar 

  • Brigstock D.R., Steffen C.L., Kim G.Y., Vegunta R.K., Diehl J.R., Harding P.A. (1997). Purification and characterization of novel heparin-binding growth factors in uterine secretory fluids. Identification as heparin-regulated Mr 10,000 forms of connective tissue growth factor. J Biol Chem 272(32): 20275–20282.

    Article  CAS  PubMed  Google Scholar 

  • Chevalier G., Yeger H., Martinerie C., Laurent M., Alami J., Schofield P.N., et al. (1998). novH: differential expression in developing kidney and Wilm’s tumors. Am J Pathol 152(6): 1563–1575.

    CAS  PubMed  Google Scholar 

  • Chomczynski P., Sacchi N. (1987). Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem 162(1): 156–159.

    Article  CAS  PubMed  Google Scholar 

  • Cooker L.A., Peterson D., Rambow J., Riser M.L., Riser R.E., Najmabadi F., et al. (2007). TNF-{alpha}, but not IFN-{gamma}, regulates CCN2 (CTGF), collagen type I, and proliferation in mesangial cells: possible roles in the progression of renal fibrosis. Am J Physiol Renal Physiol 293(1): F157–F165.

    Article  CAS  PubMed  Google Scholar 

  • Glukhova L., Angevin E., Lavialle C., Cadot B., Terrier-Lacombe M.-J., Perbal B., et al. (2001). Patterns of specific genomic alterations associated with poor prognosis in high-grade renal cell carcinomas. Cancer Genet Cytogenet 130(2): 105–110.

    Article  CAS  PubMed  Google Scholar 

  • Guha M., Xu Z.G., Tung D., Lanting L., Natarajan R. (2007). Specific down-regulation of connective tissue growth factor attenuates progression of nephropathy in mouse models of type 1 and type 2 diabetes. Faseb J 21: 3355–3368.

    Google Scholar 

  • Gupta R., Hong D., Iborra F., Sarno S., Enver T. (2007). NOV (CCN3) functions as a regulator of human hematopoietic stem or progenitor cells. Science 316(5824): 590–593.

    Article  CAS  PubMed  Google Scholar 

  • Hahn A., Heusinger-Ribeiro J., Lanz T., Zenkel S., Goppelt-Struebe M. (2000). Induction of connective tissue growth factor by activation of heptahelical receptors. Modulation by Rho proteins and the actin cytoskeleton. J Biol Chem 275(48): 37429–37435.

    Article  CAS  PubMed  Google Scholar 

  • Hostetter T.H. (1995). Progression of renal disease and renal hypertrophy. Annu Rev Physiol 57: 263–278.

    Article  CAS  PubMed  Google Scholar 

  • Kyurkchiev S., Yeger H., Bleau A.M., Perbal B. (2004). Potential cellular conformations of the CCN3(NOV) protein. Cell Commun Signal 2(1): 9.

    Article  PubMed  Google Scholar 

  • Liu C., Liu X.-J., Crowe P.D., Kelner G.S., Fan J., Barry G., et al. (1999). Nephroblastoma overexpressed gene (NOV) codes for a growth factor that induces protein tyrosine phosphorylation. Gene 238(2): 471–478.

    Article  CAS  PubMed  Google Scholar 

  • McCallum L., Price S., Planque N., Perbal B., Pierce A., Whetton A.D., et al. (2006). A novel mechanism for BCR-ABL action: stimulated secretion of CCN3 is involved in growth and differentiation regulation. Blood 108(5): 1716–1723.

    Article  CAS  PubMed  Google Scholar 

  • Niu Z., Ito M., Awakura Y., Takahashi T., Nakamura E., Ito N., et al. (2005). The expression of NOV and WT1 in renal cell carcinoma: a quantitative reverse transcriptase-polymerase chain reaction analysis. J Urol 174(4 Pt 1): 1460–1462.

    Article  CAS  PubMed  Google Scholar 

  • Okada H., Kikuta T., Kobayashi T., Inoue T., Kanno Y., Takigawa M., et al. (2005). Connective tissue growth factor expressed in tubular epithelium plays a pivotal role in renal fibrogenesis. J Am Soc Nephrol 16(1): 133–143.

    Article  CAS  PubMed  Google Scholar 

  • Perbal B. (2001). The CCN family of genes: a brief history. Mol Pathol 54(2): 103–104.

    Article  CAS  PubMed  Google Scholar 

  • Perbal B. (2004). CCN proteins: multifunctional signalling regulators. Lancet 363(9402): 62–64.

    Article  CAS  PubMed  Google Scholar 

  • Perbal B., Martinerie C., Sainson R., Werner M., He B., Roizman B. (1999). The C-terminal domain of the regulatory protein NOVH is sufficient to promote interaction with fibulin 1C: a clue for a role of NOVH in cell-adhesion signaling. Proc Natl Acad Sci U S A 96(3): 869–874.

    Article  CAS  PubMed  Google Scholar 

  • Poncelet A.C., de Caestecker M.P., Schnaper H.W. (1999). The transforming growth factor-beta/SMAD signaling pathway is present and functional in human mesangial cells. Kidney Int 56(4): 1354–1365.

    Article  CAS  PubMed  Google Scholar 

  • Rachfal A.W., Brigstock D.R. (2005). Structural and functional properties of CCN proteins. Vitam Horm 70: 69–103.

    Article  CAS  PubMed  Google Scholar 

  • Riser B.L., Cortes P. (2001). Connective tissue growth factor and its regulation: a new element in diabetic glomerulosclerosis. Ren Fail 23(3–4): 459–470.

    Article  CAS  PubMed  Google Scholar 

  • Riser B.L., Cortes P., DeNichilo M., Deshmukh P.V., Chahal P.S., Mohammed A.K., et al. (2003). Urinary CCN2 (CTGF) as a possible predictor of diabetic nephropathy: preliminary report. Kidney Int 64(2): 451–458.

    Article  CAS  PubMed  Google Scholar 

  • Riser B.L., Cortes P., Yee J. (2000). Modelling the effects of vascular stress in mesangial cells. Curr Opin Nephrol Hypertens 9(1): 43–47.

    Article  CAS  PubMed  Google Scholar 

  • Riser B.L., Cortes P., Yee J., Sharba A.K., Asano K., Rodriguez-Barbero A., et al. (1998). Mechanical strain- and high glucose-induced alterations in mesangial cell collagen metabolism: role of TGF-beta. J Am Soc Nephrol 9(5): 827–836.

    CAS  PubMed  Google Scholar 

  • Riser B.L., Denichilo M., Cortes P., Baker C., Grondin J.M., Yee J., et al. (2000). Regulation of connective tissue growth factor activity in cultured rat mesangial cells and its expression in experimental diabetic glomerulosclerosis. J Am Soc Nephrol 11(1): 25–38.

    CAS  PubMed  Google Scholar 

  • Riser B., Foroni A., Karoor S. (2006). CCN2 (CTGF) in the pathogenesis of diabetic renal disease: a target for therapeutic intervention. In C. Morgensen P. Cortes (Eds.), The kidney and diabetes mellitus (Sixth ed.) pp. 175–186. Kluwer Academic Publishers, Boston, MA.

    Google Scholar 

  • Riser B.L., Ladson-Wofford S., Sharba A., Cortes P., Drake K., Guerin C.J., et al. (1999). TGF-beta receptor expression and binding in rat mesangial cells: modulation by glucose and cyclic mechanical strain. Kidney Int 56(2): 428–439.

    Article  CAS  PubMed  Google Scholar 

  • Riser B.L., Najmabadi, F., Perbal, B., Peterson D.R., Rambow, V., Riser, M.L., Sukowski, E., Yeger, H., and Riser, S.C. (2009). CCN3 (Nov) is a negative regulator od CCNZ (CTGF) and a novel endogenous inhibitor of the fibrotic pathway in an in vitro model of renal disease. Am J Pathol 174(5): 1725–1734.

    Google Scholar 

  • Riser B.L., Varani J., Cortes P., Yee J., Dame M., Sharba A.K. (2001). Cyclic stretching of mesangial cells up-regulates intercellular adhesion molecule-1 and leukocyte adherence: a possible new mechanism for glomerulosclerosis. Am J Pathol 158(1): 11–17.

    CAS  PubMed  Google Scholar 

  • van Roeyen C.R., Eitner F., Scholl T., Boor P., Kunter U., Planque N., et al. (2008). CCN3 is a novel endogenous PDGF-regulated inhibitor of glomerular cell proliferation. Kidney Int 73: 86–94.

    Google Scholar 

  • Thomopoulos G.N., Kyurkchiev S., Perbal B. (2001). Immunocytochemical localization of NOVH protein and ultrastructural characteristics of NCI-H295R cells. J Submicrosc Cytol Pathol 33(3): 251–260.

    CAS  PubMed  Google Scholar 

  • Yokoi H., Mukoyama M., Nagae T., Mori K., Suganami T., Sawai K., et al. (2004). Reduction in connective tissue growth factor by antisense treatment ameliorates renal tubulointerstitial fibrosis. J Am Soc Nephrol 15(6): 1430–1440.

    Article  CAS  PubMed  Google Scholar 

  • Ziyadeh F.N. (2004). Mediators of diabetic renal disease: the case for TGF-b as the major mediator. J Am Soc Nephrol 15(1, Suppl. 1): S55–S57.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr. William Snapper at Northwestern University for providing the col1a2 construct. This work was supported by Grants from the American Diabates Association and The Juvenile Diabetes Foundation International (BLR).

The research in BP’s laboratory at the University Paris 7 D. Diderot was funded by a European contract ‘PROTHETS (Prognosis and therapeutic targets of Ewing’s family of tumours) FP6 contract number 503036’ and the French ministry of Education.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruce. L. Riser .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Riser, B.L. et al. (2010). CCN3 (NOV): A Negative Regulator of CCN2 (CTGF) Activity and an Endogenous Inhibitor of Fibrosis in Experimental Diabetic Nephropathy. In: Perbal, A., Takigawa, M., Perbal, B. (eds) CCN Proteins in Health and Disease. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3779-4_13

Download citation

Publish with us

Policies and ethics