Skip to main content

Global Expression Profiling Reveals a Role for CTGF/CCN2 in Lactogenic Differentiation of Mouse Mammary Epithelial Cells

  • Chapter
  • First Online:
CCN Proteins in Health and Disease

Abstract

Mammary epithelial cells undergo a series of developmental changes during pregnancy and lactation including proliferation, differentiation, secretion and apoptosis. HC11 mouse mammary epithelial cells, which are capable of lactogen-induced differentiation in cell culture, were used to follow the changes in gene expression during this process. The expression profiles of over 20,000 genes were compared in HC11 cells undergoing lactogenic differentiation to non-differentiated cells using DNA microarray analysis. Greater than two fold changes were detected in 998 genes in the differentiated cells versus growth controls. Several genes, including CTGF/CCN2, exhibited greater than five-fold increase. Validation of the gene expression changes verified the involvement of numerous genes and pathways in the differentiation of mouse mammary epithelial cells and identified genetic pathways associated with specific transcriptional regulation. Further analysis revealed EGF-dependent regulation of a specific subset of genes including important cell cycle regulators. The expression of a subset of genes regulated by lactogenic differentiation in HC11 cells, including CTGF/CCN2 and osteopontin, was examined in mouse mammary glands revealing in vivo changes in expression during pregnancy and lactation. In addition, elevation or depletion of CTGF/CCN2 in HC11 cells had a significant effect on the degree of lactogenic differentiation observed in the cells. The studies confirm the value of expression profiling in defining transcriptional controls associated with differentiation of mammary epithelial cells and revealed novel regulators of the process, including CTGF/CCN2.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

CTGF:

connective tissue growth factor

EGF:

epidermal growth factor

TGFβ:

transforming growth factor beta

FAK:

focal adhesion kinase

DIP:

dexamethasone, insulin and prolactin

Cy5:

cyanine 5-CTP

Cy3:

cyanine 3-CTP

GFP:

green fluorescent protein

siRNA:

small inhibitory RNA

References

  • Akhtar N., Streuli C.H. (2006). Rac1 links integrin-mediated adhesion to the control of lactational differentiation in mammary epithelia. J Cell Biol 173: 781–793.

    Article  CAS  PubMed  Google Scholar 

  • Ali S. (1998). Prolactin receptor regulates Stat5 tyrosine phosphorylation and nuclear translocation by two separate pathways. J. Biol Chem 273: 7709–7716.

    Article  CAS  PubMed  Google Scholar 

  • Anderson S.M., Rudolph M.C., McManaman J.L., Neville M.C. (2007). Key stages in mammary gland development. Secretory activation in the mammary gland: it’s not just about milk protein synthesis! Breast Cancer Res 9: 204.

    Article  PubMed  Google Scholar 

  • Ball R.K., Friis R.R., Schoenenberger C.A., Doppler W., Groner B. (1988). Prolactin regulation of beta-casein gene expression and of a cytosolic 120-kd protein in a cloned mouse mammary epithelial cell line. Embo J 7: 2089–2095.

    CAS  PubMed  Google Scholar 

  • Brigstock D.R. (2002). Regulation of angiogenesis and endothelial cell function by connective tissue growth factor (CTGF) and cysteine-rich 61 (CYR61). Angiogenesis 5: 153–165.

    Article  CAS  PubMed  Google Scholar 

  • Brigstock D.R. (2003). The CCN family: a new stimulus package. J Endocrinol 178: 169–175.

    Article  CAS  PubMed  Google Scholar 

  • Carlinfante G., Vassiliou D., Svensson O., Wendel M., Heinegard D., Andersson G. (2003). Differential expression of osteopontin and bone sialoprotein in bone metastasis of breast and prostate carcinoma. Clin Exp Metastasis 20: 437–444.

    Article  CAS  PubMed  Google Scholar 

  • Cerrito M.G., Galbaugh T., Wang W., Chopp T., Salomon D., Cutler M.L. (2004). Dominant negative Ras enhances lactogenic hormone-induced differentiation by blocking activation of the Raf-Mek-Erk signal transduction pathway. J Cell Physiol 201: 244–258.

    Article  CAS  PubMed  Google Scholar 

  • Clarkson R.W., Watson C.J. (2003). Microarray analysis of the involution switch. J Mammary Gland Biol Neoplasia 8: 309–319.

    Article  PubMed  Google Scholar 

  • Craig A.M., Nemir M., Mukherjee B.B., Chambers A.F., Denhardt D.T. (1988). Identification of the major phosphoprotein secreted by many rodent cell lines as 2ar/osteopontin: enhanced expression in H-ras-transformed 3T3 cells. Biochem Biophys Res Commun 157: 166–173.

    Article  CAS  PubMed  Google Scholar 

  • Danielson K., Oborn C., Durbam E., Butel J., Medina D. (1984). Epithelial mouse mammary cell line exhibiting normal morphogenesis in vivo and functional differentiation in vitro. Proc Natl Acad Sci 81: 3756–3760.

    Article  CAS  PubMed  Google Scholar 

  • Desrivieres S., Kuhn K., Muller J., Glaser M., Laria N.C., Korder J., Sonnentag M., Neumann T., Schwarz J., Schafer J., et al. (2007). Comparison of the nuclear proteomes of mammary epithelial cells at different stages of functional differentiation. Proteomics 7: 2019–2037.

    Article  CAS  PubMed  Google Scholar 

  • Desrivieres S., Prinz T., Castro-Palomino Laria N., Meyer M., Boehm G., Bauer U., Schafer J., Neumann T., Shemanko C., Groner B. (2003). Comparative proteomic analysis of proliferating and functionally differentiated mammary epithelial cells. Mol Cell Proteomics 2: 1039–1054.

    Article  CAS  PubMed  Google Scholar 

  • Galbaugh T., Cerrito M.G., Jose C.C., Cutler M.L. (2006). EGF-induced activation of Akt results in mTOR-dependent p70S6 kinase phosphorylation and inhibition of HC11 cell lactogenic differentiation. BMC Cell Biol 7: 34.

    Article  PubMed  Google Scholar 

  • Gao R., Brigstock D.R. (2004). Connective tissue growth factor (CCN2) induces adhesion of rat activated hepatic stellate cells by binding of its C-terminal domain to integrin alpha(v)beta(3) and heparan sulfate proteoglycan. J Biol Chem 279: 8848–8855.

    Article  CAS  PubMed  Google Scholar 

  • Gao R., Brigstock D.R. (2006). A novel integrin alpha5beta1 binding domain in module 4 of connective tissue growth factor (CCN2/CTGF) promotes adhesion and migration of activated pancreatic stellate cells. Gut 55: 856–862.

    Article  CAS  PubMed  Google Scholar 

  • Gass S., Harris J., Ormandy C., Brisken C. (2003). Using gene expression arrays to elucidate transcriptional profiles underlying prolactin function. J Mammary Gland Biol Neoplasia 8: 269–285.

    Article  PubMed  Google Scholar 

  • Gouilleux F., Wakeo H., Mundt M., Groner B. (1994). Prolactin induces phosphorylation of Tyr 694 of Stat5 (MGF), a prerequisite for DNA binding and induction of transcription. EMBO J 13: 4361–4369.

    CAS  PubMed  Google Scholar 

  • Han Y., Watling D., Rogers N., Stark G. (1997). Jak2 and Stat5, but not Jak1 and Stat1, are required for prolactin-induced beta-lactoglobulin transcription. Mol Endocrinol 11: 1180–1188.

    Article  CAS  PubMed  Google Scholar 

  • Hayashi C., Rittling S., Hayata T., Amagasa T., Denhardt D., Ezura Y., Nakashima K., Noda M. (2007). Serum osteopontin, an enhancer of tumor metastasis to bone, promotes B16 melanoma cell migration. J Cell Biochem 101: 979–986.

    Article  CAS  PubMed  Google Scholar 

  • Hecht J., Seitz V., Urban M., Wagner F., Robinson P.N., Stiege A., Dieterich C., Kornak U., Wilkening U., Brieske N., et al. (2007). Detection of novel skeletogenesis target genes by comprehensive analysis of a Runx2(-/-) mouse model. Gene Expr Patterns 7: 102–112.

    Article  CAS  PubMed  Google Scholar 

  • Humphreys R., Rosen J. (1997). Stably transfected HC11 cells provide and in vitro and in vivio model system for studying Wnt gene expression. Cell Growth Diff 8: 839–849.

    CAS  PubMed  Google Scholar 

  • Hynes N.E., Taverna D., Harwerth I.M., Ciardiello F., Salomon D.S., Yamamoto T., Groner B. (1990). Epidermal growth factor receptor, but not c-erbB-2, activation prevents lactogenic hormone induction of the beta-casein gene in mouse mammary epithelial cells. Mol Cell Biol 10: 4027–4034.

    CAS  PubMed  Google Scholar 

  • Ivkovic S., Yoon B.S., Popoff S.N., Safadi F.F., Libuda D.E., Stephenson R.C., Daluiski A., Lyons K.M. (2003). Connective tissue growth factor coordinates chondrogenesis and angiogenesis during skeletal development. Development 130: 2779–2791.

    Article  CAS  PubMed  Google Scholar 

  • Kang Y., Siegel P.M., Shu W., Drobnjak M., Kakonen S.M., Cordon-Cardo C., Guise T.A., Massague J. (2003). A multigenic program mediating breast cancer metastasis to bone. Cancer Cell 3: 537–549.

    Article  CAS  PubMed  Google Scholar 

  • Kazanecki C.C., Uzwiak D.J., Denhardt D.T. (2007). Control of osteopontin signaling and function by post-translational phosphorylation and protein folding. J Cell Biochem 102: 912–924.

    Article  CAS  PubMed  Google Scholar 

  • Kelly P.A., Bachelot A., Kedzia C., Hennighausen L., Ormandy C.J., Kopchick J.J., Binart N. (2002). The role of prolactin and growth hormone in mammary gland development. Mol Cell Endocrinol 197: 127–131.

    Article  CAS  PubMed  Google Scholar 

  • Leask A., Abraham D.J. (2006). All in the CCN family: essential matricellular signaling modulators emerge from the bunker. J Cell Sci 119: 4803–4810.

    Article  CAS  PubMed  Google Scholar 

  • Li N., Zhang Y., Naylor M.J., Schatzmann F., Maurer F., Wintermantel T., Schuetz G., Mueller U., Streuli C.H., Hynes N.E. (2005). Beta1 integrins regulate mammary gland proliferation and maintain the integrity of mammary alveoli. Embo J 24: 1942–1953.

    Article  CAS  PubMed  Google Scholar 

  • Marte B., Jeschke M., Grause-Porta D., Taverna D., Hofer P., Groner B., Yarden Y., Hynes N. (1995a). Neu differentiation factor/heregulin modulates growth and differentiation of HC11 mammary epithelial cells. Mol Endocrinol 9: 14–23.

    Article  CAS  PubMed  Google Scholar 

  • Marte B.M., Jeschke M., Graus-Porta D., Taverna D., Hofer P., Groner B., Yarden Y., Hynes N.E. (1995b). Neu differentiation factor/heregulin modulates growth and differentiation of HC11 mammary epithelial cells. Mol Endocrinol 9: 14–23.

    Article  CAS  PubMed  Google Scholar 

  • Master S.R., Hartman J.L., D’Cruz C.M., Moody S.E., Keiper E.A., Ha S.I., Cox J.D., Belka G.K., Chodosh L.A. (2002). Functional microarray analysis of mammary organogenesis reveals a developmental role in adaptive thermogenesis. Mol Endocrinol 16: 1185–1203.

    Article  CAS  PubMed  Google Scholar 

  • Merlo G., Grause-Porta D., Cella N., Marte B., Taverna D., Hynes N. (1996). Growth, differentiation and survival of HC11 mammary epithelial cells: diverse effects of receptor tyrosine kinase-activating peptide growth factors. Eur J Cell Biol 70: 97–105.

    Article  CAS  PubMed  Google Scholar 

  • Merlo G., Venesio T., Taverna D., Marte B., Callahan R., Hynes N. (1994). Growth suppression of normal mammary epithelial cells by wild type p53. Oncogene 9: 443–453.

    CAS  PubMed  Google Scholar 

  • Mi Z., Guo H., Wai P.Y., Gao C., Wei J., Kuo P.C. (2004). Differential osteopontin expression in phenotypically distinct subclones of murine breast cancer cells mediates metastatic behavior. J Biol Chem 279: 46659–46667.

    Article  CAS  PubMed  Google Scholar 

  • Nagaiah K., Bolander F.F., Jr., Nicholas K.R., Takemoto T., Topper Y.J. (1981). Prolactin-induced accumulation of casein mRNA in mouse mammary explants: a selective role of glucocorticoid. Biochem Biophys Res Commun 98: 380–387.

    Article  CAS  PubMed  Google Scholar 

  • Nagatomo T., Ohga S., Takada H., Nomura A., Hikino S., Imura M., Ohshima K., Hara T. (2004). Microarray analysis of human milk cells: persistent high expression of osteopontin during the lactation period. Clin Exp Immunol 138: 47–53.

    Article  CAS  PubMed  Google Scholar 

  • Naylor M.J., Li N., Cheung J., Lowe E.T., Lambert E., Marlow R., Wang P., Schatzmann F., Wintermantel T., Schuetz G., et al. (2005). Ablation of beta1 integrin in mammary epithelium reveals a key role for integrin in glandular morphogenesis and differentiation. J Cell Biol 171: 717–728.

    Article  CAS  PubMed  Google Scholar 

  • Perbal B. (2004). CCN proteins: multifunctional signalling regulators. Lancet 363: 62–64.

    Article  CAS  PubMed  Google Scholar 

  • Peterson H., Haldosen L. (1998). EGF modulates expression of Stat5 in mammary epithelial cells. Exp Cell Res 243: 347–358.

    Article  Google Scholar 

  • Phillips K., Park M.A., Quarrie L.H., Boutinaud M., Lochrie J.D., Flint D.J., Allan G.J., Beattie J. (2003). Hormonal control of IGF-binding protein (IGFBP)-5 and IGFBP-2 secretion during differentiation of the HC11 mouse mammary epithelial cell line. J Mol Endocrinol 31: 197–208.

    Article  CAS  PubMed  Google Scholar 

  • Rudolph M.C., McManaman J.L., Hunter L., Phang T., Neville M.C. (2003). Functional development of the mammary gland: use of expression profiling and trajectory clustering to reveal changes in gene expression during pregnancy, lactation, and involution. J Mammary Gland Biol Neoplasia 8: 287–307.

    Article  PubMed  Google Scholar 

  • Rudolph M.C., McManaman J.L., Phang T., Russell T., Kominsky D.J., Serkova N.J., Stein T., Anderson S.M., Neville M.C. (2007). Metabolic regulation in the lactating mammary gland: a lipid synthesizing machine. Physiol Genomics 28: 323–336.

    CAS  PubMed  Google Scholar 

  • Stein T., Salomonis N., Gusterson B.A. (2007). Mammary gland involution as a multi-step process. J Mammary Gland Biol Neoplasia 12: 25–35.

    Article  PubMed  Google Scholar 

  • Stocklin E., Wissler M., Gouilleux F., Groner B. (1996). Functional interactions between Stat5 and the glucocorticoid receptor. Nature 383: 726–728.

    Article  CAS  PubMed  Google Scholar 

  • Taverna D., Groner B., Hynes N.E. (1991). Epidermal growth factor receptor, platelet-derived growth factor receptor, and c-erbB-2 receptor activation all promote growth but have distinctive effects upon mouse mammary epithelial cell differentiation. Cell Growth Differ 2: 145–154.

    CAS  PubMed  Google Scholar 

  • Vedoy C.G., Sogayar M.C. (2002). Isolation and characterization of genes associated with the anti-tumor activity of glucocorticoids. Brain Res Mol Brain Res 106: 57–69.

    Article  CAS  PubMed  Google Scholar 

  • Velarde M.C., Zeng Z., McQuown J.R., Simmen F.A., Simmen R.C. (2007). Krupple-like Factor 9 is a negative regulator of ligand dependent estrogen receptor signaling in Ishikawa endometrial carcinoma cells. Mol Endocrinol 21: 2988–3001.

    Google Scholar 

  • Wang W., Morrison B., Galbaugh T., Jose C.C., Kenney N., Cutler M.L. (2008). Glucocorticoid induced expression of connective tissue growth factor contributes to lactogenic differentiation of mouse mammary epithelial cells. J Cell Physiol 214: 38–46.

    Article  CAS  PubMed  Google Scholar 

  • Zhang X.L., Zhang D., Michel F.J., Blum J.L., Simmen F.A., Simmen R.C. (2003). Selective interactions of Kruppel-like factor 9/basic transcription element-binding protein with progesterone receptor isoforms A and B determine transcriptional activity of progesterone-responsive genes in endometrial epithelial cells. J Biol Chem 278: 21474–21482.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Dr. David Salomon for commentary and advice. The work was supported by grants from the Congressionally Directed Medical Research Fund (DAMD17-01-0264), NIH (R01CA90908) and USMCI to M. L. Cutler.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mary Lou Cutler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Wang, W., Jose, C., Kenney, N., Morrison, B., Cutler, M.L. (2010). Global Expression Profiling Reveals a Role for CTGF/CCN2 in Lactogenic Differentiation of Mouse Mammary Epithelial Cells. In: Perbal, A., Takigawa, M., Perbal, B. (eds) CCN Proteins in Health and Disease. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3779-4_12

Download citation

Publish with us

Policies and ethics