Skip to main content

Wheeler Wormholes and the Modern Astrophysics

  • Chapter
  • First Online:
  • 1451 Accesses

Part of the book series: Astrophysics and Space Science Library ((ASSL,volume 367))

Abstract

J.A. Wheeler was the main propagandist of thewormhole idea. We consider the hypothesis that some active galactic nuclei and other compact astrophysical objects may be current or former entrances to wormholes. A broad mass spectrum for astrophysical wormholes is possible. We consider various new models of the static wormholes including wormholes maintained mainly by an electromagnetic field. We also discuss observational effects of a single entrance to wormhole and a model for a binary astrophysical system formed by the entrances of wormholes with magnetic fields and consider its possible manifestation.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. A. Einstein and N. Rosen, Phys. Rev. 48, 73 (1935).

    Article  ADS  Google Scholar 

  2. J. A. Wheeler, Phys. Rev. 97, 511 (1955).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  3. C. W. Misner and J. A. Wheeler, Ann. Phys. (N.Y.) 2, 525 (1957).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  4. J. A. Wheeler, Ann. Phys. (N.Y.) 2, 604 (1957).

    Article  ADS  MATH  Google Scholar 

  5. A. Vilenkin, Phys. Rev. D 27, 2848 (1983).

    Article  MathSciNet  ADS  Google Scholar 

  6. A. Linde, Phys. Lett. B 175, 395 (1986).

    Article  ADS  Google Scholar 

  7. S. W. Hawking, Black Holes and the Structure of the Universe, Eds. by C. Teitelboim and J.Zanelli (World Sci., Singapore, 2000), p. 23.

    Google Scholar 

  8. M. Visser, Lorential Wormholes: from Einstein to Hawking (Springer, AIP, 1996).

    Google Scholar 

  9. F. S. N. Lobo, Phys. Rev. D 71, 084011, (2005).

    Article  MathSciNet  ADS  Google Scholar 

  10. H. Shinkai and S. A. Hayward, Phys. Rev. D 66, 4005, (2002).

    Article  MathSciNet  ADS  Google Scholar 

  11. F. Rahaman, M. Kalam, M. Sarker, and K. Gayen, gr-qc/0512075, (2005).

    Google Scholar 

  12. P. K. F. Kuhfittig, gr-qc/0512027, (2005).

    Google Scholar 

  13. F. S. N. Lobo, gr-qc/0506001 (2005).

    Google Scholar 

  14. M. Visser, S. Kar, and N. Dadhich, gr-qc/0301003, (2003).

    Google Scholar 

  15. F. Rahaman, et al, gr-qc/0607061, (2006).

    Google Scholar 

  16. H. K. Jassal, J. S. Bagla, and T. Padmanabhan, Phys. Rev. D 72, 103503, (2005).

    Article  ADS  Google Scholar 

  17. C. Armendariz-Picon, gr-qc/0201027, (2002).

    Google Scholar 

  18. N. S. Kardashev, I. D. Novikov, and A. A. Shatskiy, International Journal of Modern Physics D, in press, April, (2007); astro-ph/0610441.

    Google Scholar 

  19. L. Stawarz, Astrophys. J. 613, 119, (2004).

    Article  ADS  Google Scholar 

  20. Black Holes: the Membrane Paradigm, Ed. by K. S. Thorne, R. H. Price, and D. A. Macdonald (Yale Univ. Press, New Haven, 1986, Mir, Moscow, 1988).

    Google Scholar 

  21. R. E. Schild, D. J. Leiter, and L. Robertson, astro-ph/0505518, (2005).

    Google Scholar 

  22. L. Ostorero, S. J. Wagner, J. Gracia, et al., astro-ph/0602237, (2006).

    Google Scholar 

  23. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 2: The Classical Theory of Fields (Nauka, Moscow, 1995; Pergamon, Oxford, 1975).

    Google Scholar 

  24. V. L. Ginzburg and L. M. Ozernoi, Zh. Eksp. Teor. Fiz. 47, 1030 (1964) [Sov. Phys. JETP 20, 689, (1964)].

    Google Scholar 

  25. I. D. Novikov, Astron. Tsirk., N290, (1964).

    Google Scholar 

  26. N. S. Kardashev, Epilogue to the Russian Eddition of the Monograph by G.P. Burbidge and E.M. Burbidge “Quasars”, (Mir, Moscow, 1969) [in Russian].

    Google Scholar 

  27. Yu. A. Kovalev and Yu. Yu. Kovalev, Publ. Astron. Soc. Jpn. 52, 1027, (2000).

    ADS  Google Scholar 

  28. Project “Radioastron”, http://www.asc.rssi.ru/radioastron/description/intro_eng.htm.

  29. Project “Millimetron”, http://www.asc.rssi.ru/millimetron/millim_eng.htm.

  30. S. P. Gavrilov, hep-th/0510093, (2005).

    Google Scholar 

  31. M. Morris and K. S. Thorne, Am. J. Phys. 56, 395, (1988).

    Article  MathSciNet  ADS  Google Scholar 

  32. A. A. Shatskiy, Astron. Zh. 81, 579, (2004) [Astron. Rep. 48, 525, (2004)].

    Google Scholar 

  33. A. A. Shatskiy, Astron. Zh. (2006, in press).

    Google Scholar 

  34. C.W. Misner, K. S. Thorne, and J. A. Wheeler, it Gravitation (Freeman, San Francisco, 1973; Mir, Moscow, 1977), Vol. 3.

    Google Scholar 

  35. P. F. Gonzalez-Diaz, astro-ph/0510771, (2005).

    Google Scholar 

  36. N. S. Kardashev, Mon. Not. R. Astron. Soc. 276, 515, (1995).

    ADS  Google Scholar 

  37. A. E. Shabad and V. V. Usov, hep-th/0512236, (2005).

    Google Scholar 

  38. A. E. Shabad and V. V. Usov, astro-ph/0601542, (2006).

    Google Scholar 

  39. M. Bander and H. R. Rubinstein, Phys. Lett. B 280, 121, (1992).

    Article  ADS  Google Scholar 

  40. M. Bander and H. R. Rubinstein, Phys. Lett. B 289, 385, (1992).

    Article  ADS  Google Scholar 

  41. R. C. Duncan, astro-ph/0002442, (2000).

    Google Scholar 

  42. Qiu-He Peng and Chih-Kang Chou, Astrophys. J. 551, L23, (2001).

    Article  ADS  Google Scholar 

  43. G. Hooft, Nucl. Phys. B 79, 276, (1974).

    Article  ADS  Google Scholar 

  44. A. M. Polyakov, Zh. Eksp. Teor. Fiz. 20, 194, (1974).

    Google Scholar 

  45. T. W. Kibble, J. Phys. A 9, 1387, (1976).

    Article  ADS  MATH  Google Scholar 

  46. R. D. Blandford and R. L. Znajek, Mon. Not. R. Astron. Soc. 179, 433, (1977).

    ADS  Google Scholar 

  47. V. P. Frolov and I. D. Novikov, Black Hole Physics. Basic Concepts and New Developments (Kluwer, 1998).

    Google Scholar 

  48. B. Carr, astro-ph/0511743, (2005).

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Russian Foundation for Basic Research (project numbers: 05-02-17377, 05-02-16302-a, 04-02-16987-a, 04-02-17257-a) and the Program in Support of Leading Scientific Schools of the Russian Federation (NSH-1653.2003.2) and program “stellar evolution”. The authors are grateful to S.P. Gavrilov[30], B.V. Komberg, M.B. Mensky, D.I. Novikov, V.I. Ritus, and A.E. Shabat for useful discussions and comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Igor D. Novikov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Novikov, I.D., Kardashev, N.S., Shatskiy, A.A. (2010). Wheeler Wormholes and the Modern Astrophysics. In: Ciufolini, I., Matzner, R. (eds) General Relativity and John Archibald Wheeler. Astrophysics and Space Science Library, vol 367. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3735-0_4

Download citation

Publish with us

Policies and ethics