Skip to main content

Atom Interferometers and Optical Clocks: New Quantum Sensors Based on Ultracold Atoms for Gravitational Tests in Earth Laboratories and in Space

  • Chapter
  • First Online:
  • 1441 Accesses

Part of the book series: Astrophysics and Space Science Library ((ASSL,volume 367))

Abstract

Cooling and trapping of neutral atoms has been one of the most active fields of research in physics in recent years. Several methods were demonstrated to reach temperatures as low as a few nanokelvin allowing, for example, the investigation of quantum degenerate gases. The ability to control the quantum degrees of freedom of atoms opens the way to applications for precision measurement of fundamental physical quantities. Here, experiments we are performing using atom interferometry to determine the gravitational constant G and test the Newtonian gravitational law at micrometric distances will be presented. Other experiments in progress, planned or being considered using atom interferometers and new optical atomic clocks in ground laboratories and in space are also discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. S. Chu, C. Cohen-Tannoudji, and W.D. Phillips, Nobel Lectures in Physics 1997, Rev. Mod. Phys. 70, 685 (year1998).

    Google Scholar 

  2. E.A. Cornell and C.E. Wieman, Nobel Lectures in Physics 2001, Rev. Mod. Phys. 74, 875, 1131 (2002); W. Ketterle, ibid., 1131 (2002).

    Article  ADS  Google Scholar 

  3. J. Hall and T. Haensch, Nobel Lectures in Physics 2005, Rev. Mod. Phys. 78, 1279 (2007).

    Article  ADS  Google Scholar 

  4. A. Peters, K.Y. Chung, and S. Chu, Metrologia 38, 25 (2001).

    Article  ADS  Google Scholar 

  5. M.J. Snadden, J.M. McGuirk, P. Bouyer, K.G. Haritos, and M.A. Kasevich, Phys. Rev. Lett. 81, 971 (1998).

    Article  ADS  Google Scholar 

  6. J.M. McGuirk, G.T. Foster, J.B. Fixler, M.J. Snadden, and M.A. Kasevich, Phys. Rev. A 65, 033608 (2002).

    Article  ADS  Google Scholar 

  7. T.L. Gustavson, P. Bouyer, and M. Kasevich, Phys. Rev. Lett. 78, 2046 (1997).

    Article  ADS  Google Scholar 

  8. T.L. Gustavson, A. Landragin, and M.A. Kasevich, Class. Quantum Grav. 17, 2385 (2000).

    Article  ADS  MATH  Google Scholar 

  9. D.S. Weiss, B.C. Young, and S. Chu, Phys. Rev. Lett. 70, 2706 (1993).

    Article  ADS  Google Scholar 

  10. R. Battesti, P. Cladé, S. Guellati-Khélifa, C. Schwob, B. Grémaud, F. Nez, L. Julien, and F. Biraben, Phys. Rev. Lett. 92, 253001 (2004).

    Article  ADS  Google Scholar 

  11. P.R. Berman, ed., Atom interferometry (Academic press, Chestnut Hill, 1997).

    Google Scholar 

  12. S. Fray, C.A. Diez, T.W. Haensch, and M. Weitz, Phys. Rev. Lett. 93, 240404 (2004).

    Article  ADS  Google Scholar 

  13. S. Dimopoulos, P. Graham, J. Hogan, and M. Kasevich, PRL 98, 111102 (2007).

    Article  ADS  Google Scholar 

  14. G.M. Tino, in 2001: A Relativistic Spacetime Odyssey - Proceedings of JH Workshop, Firenze, 2001 (I. Ciufolini, D. Dominici, L. Lusanna eds., World Scientific, 2003). Also, Tino G. M., Nucl. Phys. B 113, 289 (2003).

    Google Scholar 

  15. G. Ferrari, N. Poli, F. Sorrentino, and G.M. Tino, Phys. Rev. Lett. 97, 060402 (2006).

    Article  ADS  Google Scholar 

  16. Chiao, Y. Raymond, Speliotopoulos, and D. Achilles, Journal of Modern Optics 51(6-7), 861 (2004).

    ADS  MATH  Google Scholar 

  17. A. Roura, D. Brill, B. Hu, C. Misner, and W. Phillips, Phys. Rev. D 73, 084018 (2006).

    Article  ADS  Google Scholar 

  18. P. Delva, M.-C. Angonin, and P. Tourrenc, Phys. Lett. A 357, 249 (2006).

    Article  ADS  Google Scholar 

  19. G. Tino and F. Vetrano, Class. Quantum Grav. 24, 2167 (2007).

    Article  ADS  MATH  Google Scholar 

  20. N. Sneeuw, R. Rummel, and J. Müller, Class. Quantum Grav. 13, A113 (1996).

    Article  ADS  MATH  Google Scholar 

  21. M. Antezza, L.P. Pitaevskii, and S. Stringari, Phys. Rev. Lett. 95, 113202 (2005).

    Article  ADS  Google Scholar 

  22. J.C. Long, H.W. Chan, A.B. Churnside, E.A. Gulbis, M.C.M. Varney, and J.C. Price, Nature 421, 922 (2005).

    Article  ADS  Google Scholar 

  23. S.J. Smullin, A.A. Geraci, D.M. Weld, J. Chiaverini, S. Holmes, and A. Kapitulnik, Phys. Rev D 72, 122001 (2005).

    Article  ADS  Google Scholar 

  24. P.J. Mohr and B.N. Taylor, Rev. Mod. Phys. 77-1, 42 (2005).

    ADS  Google Scholar 

  25. J. Stuhler, M. Fattori, T. Petelski, and G.M. Tino, J. Opt. B: Quantum Semiclass. Opt. 5, S75 (2003).

    Article  ADS  Google Scholar 

  26. A. Bertoldi, G. Lamporesi, L. Cacciapuoti, M.D. Angelis, M. Fattori, T. Petelski, A. Peters, M. Prevedelli, J. Stuhler, and G.M. Tino, Eur. Phys. J. D 40, 271 (2006).

    Article  ADS  Google Scholar 

  27. J.B. Fixler, G.T. Foster, J.M. McGuirk, and M. Kasevich, Science 315, 74 (2007).

    Article  ADS  Google Scholar 

  28. R. Legere and K. Gibble, Phys. Rev. Lett. 81, 5780 (1998).

    Article  ADS  Google Scholar 

  29. L. Cacciapuoti, M. de Angelis, M. Fattori, G. Lamporesi, T. Petelski, M. Prevedelli, J. Stuhler, and G.M. Tino, Rev. Sci. Instrum. 76, 053111 (2005).

    Article  ADS  Google Scholar 

  30. J. Schurr, F. Nolting, and W. Kündig, Phys. Rev. Lett. 80, 1142 (1998).

    Article  ADS  Google Scholar 

  31. M. Fattori, G. Lamporesi, T. Petelski, J. Stuhler, and G. Tino, Phys. Lett. A 318, 184 (2003).

    Article  ADS  MATH  Google Scholar 

  32. I. Bloch, Nat. Phys. 1, 253001 (2005, and references therein).

    Google Scholar 

  33. F. Bloch, Z. Phys. 52, 555 (1929).

    Article  ADS  Google Scholar 

  34. M. Raizen, C. Salomon, and Q. Niu, Physics Today 50 (1997, and references therein).

    Google Scholar 

  35. M. Takamoto, F.-L. Hong, R. Higashi, and H. Katori, Nature 435, 321 (2005).

    Article  ADS  Google Scholar 

  36. G. Ferrari, R.E. Drullinger, N. Poli, F. Sorrentino, and G. Tino, Phys. Rev. A 73, 23408 (2006).

    Article  ADS  Google Scholar 

  37. T. Ido, Y. Isoya, and H. Katori, Phys. Rev. A 61, 061403(R) (2000).

    Google Scholar 

  38. B.P. Anderson and M.A. Kasevich, Science 282, 1686 (1998).

    Article  ADS  Google Scholar 

  39. G. Roati, E. de Mirandes, F. Ferlaino, H. Ott, G. Modugno, and M. Inguscio, Phys. Rev. Lett. 92, 230402 (2004).

    Article  ADS  Google Scholar 

  40. N. Poli, R.E. Drullinger, G. Ferrari, J. Léonard, F. Sorrentino, and G.M. Tino, Phys. Rev. A 71, 061403(R) (2005).

    Article  ADS  Google Scholar 

  41. N. Ashcroft and N. Mermin, Solid State Physics (Saunders, 1976).

    Google Scholar 

  42. Independent measurements with an accelerometer at the level of the retro-reflecting mirror indicate a seismic noise consistent with the observed damping time.

    Google Scholar 

  43. S. Dimopoulos and A.A. Geraci, Phys. Rev. D 68, 124021 (2003).

    Article  ADS  Google Scholar 

  44. D.M. Harber, J.M. Obrecht, J.M. McGuirk, and E.A. Cornell, Phys. Rev. A 72, 033610 (2005).

    Article  ADS  Google Scholar 

  45. S. Kuhr, W. Alt, D. Schrader, M. Mueller, V. Gomer, and D. Meschede, Science 293, 278 (2001).

    Article  ADS  Google Scholar 

  46. T. Udem, J. Reichert, R. Holzwarth, and T.W. Haensch, Phys. Rev. Lett. 82, 3568 (1999).

    Article  ADS  Google Scholar 

  47. S.A. Diddams, D.J. Jones, J. Ye, S.T. Cundiff, J.L. Hall, J.K. Ranka, R.S. Windeler, R. Holzwarth, T. Udem, and T. Haensch, Phys. Rev. Lett. 84, 5102 (2000).

    Article  ADS  Google Scholar 

  48. P. Wolf and G. Petit, Phys. Rev. A 56, 4405 (1997).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guglielmo M. Tino .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Tino, G.M. (2010). Atom Interferometers and Optical Clocks: New Quantum Sensors Based on Ultracold Atoms for Gravitational Tests in Earth Laboratories and in Space. In: Ciufolini, I., Matzner, R. (eds) General Relativity and John Archibald Wheeler. Astrophysics and Space Science Library, vol 367. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3735-0_21

Download citation

Publish with us

Policies and ethics