Skip to main content

Gravitational Fields with 2-Dimensional Killing Leaves and the Gravitational Interaction of Light

  • Chapter
  • First Online:
General Relativity and John Archibald Wheeler

Part of the book series: Astrophysics and Space Science Library ((ASSL,volume 367))

  • 1406 Accesses

Abstract

Gravitational fields invariant for a non Abelian Lie algebra generating a 2-dimensional distribution, are explicitly described. When the orthogonal distribution is integrable and the metric is not degenerate along the orbits, these solutions are parameterized either by solutions of a transcendental equation (the tortoise equation), or by solutions of Darboux equation. Metrics, corresponding to solutions of the tortoise equation, are characterized as those that admit a 3-dimensional Lie algebra of Killing fields with 2-dimensional leaves. It is shown that the remaining metrics represent nonlinear gravitational waves obeying to two nonlinearsuperposition laws. The energy and the polarization of this family of waves are explicitly evaluated; it is shown that they have spin$-1$ and their possible sources are also described. Old results by Tolman, Ehrenfest, Podolsky and Wheeler on the gravitational interaction of photons are naturally reinterpreted.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Ricci flat manifolds of Kleinian signature appear in the ‘no boundary’ proposal of Hartle and Hawking[27] in which the idea is suggested that the signature of the space–time metric may have changed in the early universe. Some other examples of Kleinian geometry in physics occur in the theory of heterotic N = 2 string (see[5, 37]) for which the target space is 4-dimensional.

  2. 2.

    Be square integrable and, consequently, it would be unbounded somewhere. In this case, l μ could not represent an infinitesimal diffeomorphism.

  3. 3.

    Harmonic functions are not globally square integrable, usually there are two possibilities: either they do not decrease at infinity or they have singularities. In the second case however, they can be square integrable if one excludes the singularities from the spacetime.

  4. 4.

    As it will be now shown, the singularities are needed in order to have spatially asymptotically flat solutions.

  5. 5.

    Of course the usual alternative procedure described in almost all textbooks could be followed.

  6. 6.

    Aichelburg-Sexl solution[3] belongs to this class of solutions.

References

  1. Alty L. J., Kleinian signature change. Class. Quantum. Grav. 11(1994) 2523.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  2. Aliev B.N. and Leznov A.N., Exact solutions of the vacuum Einstein’s equations allowing for two noncommutative killing vectors Type G 2 II of Petrov classification, J. Math. Phys. 33 n.7, (1992) 2567.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  3. Aichelburg P. C. and Sexl R. U., Gen. Rel. Grav. 2(1971) 303

    Article  ADS  Google Scholar 

  4. Bächtold M., Ricci Flat Metrics with bidimensional null Orbits and non-integrable orthogonal Distribution, Preprint DIPS–3/2005.

    Google Scholar 

  5. Barret J., Gibbons G.W., Perry M. J., Pope C. N. and Ruback P., Kleinian geometry and N = 2 superstring. Int. J. Mod. Phys. A 9, (1994) 1457.

    ADS  Google Scholar 

  6. Belinsky V. A. and Khalatnikov I. M., General solution of the gravitational equations with a physical singularities, Sov. Phys. JETP 30, (1970) 6.

    Google Scholar 

  7. Bonnor, W. B. Commun. Math. Phys. 13, (1969) 163

    Article  MathSciNet  ADS  Google Scholar 

  8. Belinsky V. A. and Zakharov V. E., Integration of the Einstein equations by means of the inverse scattering problem technique and construction of the exact soliton solutions. Sov. Phys. JETP 48, (1978) 6; Stationary gravitational solitons with axial symmetry. Phys. JETP 50, (1979) 1.

    Google Scholar 

  9. Canfora F. and Vilasi G., Spin-1 gravitational waves and their natural sources. Phys. Lett. B 585, (2004) 193.

    ADS  Google Scholar 

  10. Canfora F and Vilasi G, Class. Quantum Grav.22, (2005) 1193.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  11. Canfora F., Vilasi G. and Vitale P., Nonlinear gravitational waves and their polarization, Phys. Lett. B 545, (2002) 373.

    MathSciNet  ADS  Google Scholar 

  12. Canfora F., Vilasi G. and Vitale P., Spin-1 gravitational waves,Int. J. Mod. Phys. B, 18, (2004) 527.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  13. Catalano Ferraioli D. and Vinogradov A.M., Ricci-flat 4-metrics with bidimensional null orbits, Part I. General aspects and nonabelian case. Acta Appl. Math. 92 (3)(2006) 209–225.

    Article  MathSciNet  MATH  Google Scholar 

  14. Catalano Ferraioli D. and Vinogradov A.M., Ricci-flat 4-metrics with bidimensional null orbits, Part II. Abelian case. Acta Appl. Math. 92 (3)(2006) 226–239.

    MathSciNet  Google Scholar 

  15. Chandrasekar S., The mathematical theory of black holes (Clarendon Press, Oxford, 1983).

    Google Scholar 

  16. Chinea F.J., New first integral for twisting type-N vacuum gravitational fields with two non-commuting Killing vectors. Class. Quantum Grav. 15, (1998) 367.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  17. Dirac P. A. M., General Theory of Relativity, (Wiley, N.Y. 1975).

    Google Scholar 

  18. De Filippo S., Marmo G. and Salerno M., Vilasi G., On the Phase Manifold Geometry of Integrable Nonlinear Field Theories. IFUSA (1982) n.2.

    Google Scholar 

  19. De Filippo S., Marmo G., Salerno M., Vilasi G., A New Characterization of Completely Integrable Systems. Il Nuovo Cimento B 83, 2 (1984) 97.

    Article  MathSciNet  ADS  Google Scholar 

  20. De Filippo S., Salerno M. and Vilasi G., A Geometrical Approach to Integrability of Soliton Equations. Letters in Math. Phys. 9, (1985) 85.

    Article  ADS  MATH  Google Scholar 

  21. Einstein A. and Rosen N., On gravitational waves, J.Franklin Inst. 223, (1937) 43.

    Article  ADS  Google Scholar 

  22. F. Ernst, New formulation of the axially symmetric gravitational field problem, Phys. Rev., 167, (1968) pp. 1175–8; New formulation of the axially symmetric gravitational field problem. II, Phys. Rev., 168, (1968) pp. 1415–17.

    Article  ADS  Google Scholar 

  23. Faraoni V. and Dumse R. M., The strong Intercation of Light: From Weak to Strong Fields, Gen. Rel. Grav. 31, No 1 (1999) 91

    Article  MathSciNet  ADS  MATH  Google Scholar 

  24. Geroch R., A Method for Generating New Solutions of Einstein’s Equation. II. J. Math. Phys. 13, (1972) 394.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  25. Gibbons G. W. Ruback P. J., Phys. Rev. Lett. 57, (1986) 1492.

    Article  ADS  Google Scholar 

  26. Hallisoy M., Studies in space-times admitting two spacelike Killing vectors. J. Math. Phys. 29, (1988) 320.

    Article  MathSciNet  ADS  Google Scholar 

  27. Hartle J. B. and Hawking S. W., Wave function of the universe. Phys. Rev. D 28, (1983) 2960.

    MathSciNet  ADS  Google Scholar 

  28. Kompaneyets A. S., Strong Gravitational Waves in free space. Sov. Phys. JETP 7, (1958) 659.

    Google Scholar 

  29. Landi G., Marmo G. and Vilasi G., Recursion Operators: Meaning and Existence. J. Math. Phys. 35, (1994) 2.

    Article  MathSciNet  Google Scholar 

  30. Law P. R., Neutral Einstein metrics in four dimensions. J. Math. Phys. 32, (1991) 3039.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  31. T. Lewis, Some special solutions of the equations of axially symmetric gravitational fields, Proc. Roy. Soc. London A 136, (1932) 176–192.

    ADS  Google Scholar 

  32. Matsushita Y., On Euler characteristics of compact Einstein 4-manifolds of metric signature ( + + − − ). J. Math. Phys. 22, (1981) 979.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  33. Matsushita Y., Thorpe-Hitchin inequality for compact Einstein 4-manifolds of metric signature ( + + − − ) and the generalized Hirzebruch index formula. J. Math. Phys. 24, (1983) 36.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  34. Neto ECD, Phys. Rev. D 68, (12)(2003) 124013.

    Google Scholar 

  35. Nerozzi A., Beetle C., Bruni M., Burko L. M. and Pollney D., Towards a Wave-Extraction Method for Numerical Relativity: II. The quasi-Kinnersley Frame. Phys. Rev. D 72, (2005) 024014.

    Article  ADS  Google Scholar 

  36. Newman E. and Penrose R. J., An Approach to Gravitational Radiation by a Method of Spin Coefficients. J. Math. Phys. 3, (1962) 566.

    Article  MathSciNet  ADS  Google Scholar 

  37. Ooguri H. and Vafa C., N = 2 heterotic strings. Nucl. Phys. B 367, (1991) 83.

    Article  MathSciNet  ADS  Google Scholar 

  38. Penrose R. J., A spinor approach to general relativity. Ann. of Phys. 10, (1960) 171.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  39. Peres A., Some Gravitational Waves. Phys. Rev. Lett. 3, (1959) 571.

    Article  MATH  Google Scholar 

  40. Peres A., Theory Phys. Rev. 118, (1960) 1105.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  41. Petrov A.Z., Einstein spaces, (Pergamon Press, New York, 1969).

    MATH  Google Scholar 

  42. Sakharov A. D., Cosmological transitions with changes in the signature of the metric. Sov. Phys. JETP 60, (1984) 214.

    Google Scholar 

  43. Sparano G. and Vilasi G., Noncommutative integrability and recursion operators. J. Geom. Phys. 36, (2000) 270.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  44. Sparano G., Vilasi G. and Vinogradov A. M., Gravitational fields with a non-Abelian, bidimensional Lie algebra of symmetries. Phys. Lett. B 513, (2001) 142.

    MathSciNet  ADS  Google Scholar 

  45. Sparano G., Vilasi G. and Vinogradov A. M., Vacuum Einstein metrics with bidimensional Killing leaves. I. Local aspects. Diff. Geom. Appl. 16, (2002) 95.

    Article  MathSciNet  MATH  Google Scholar 

  46. Sparano G., Vilasi G. and Vinogradov A. M., Vacuum Einstein metrics with bidimensional Killing leaves. II. Global aspects. Diff. Geom. Appl. 17, (2002) 1.

    Article  MathSciNet  Google Scholar 

  47. Kinnersley W., Recent progress in exact solutions, G. Shaviv (ed.) and J. Rosen (ed.), General Relativity and Gravitation, J. Wiley and Sons Ltd (New York 1975).

    Google Scholar 

  48. Stephani H., Kramer D., MacCallum M., Honselaers C. and Herlt E., Exact solutions of Einstein field equations, Cambridge University Press, (Cambridge, 2003).

    Book  MATH  Google Scholar 

  49. Tolman R. C., Ehrenfest P. and Podolsky B., Phys. Rev. 37, (1931) 602.

    Article  ADS  Google Scholar 

  50. Verdaguer E., Soliton solutions in spacetimes with two spacelike killing fields. Phys. Rep. 229, (1993) 1.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  51. Weinberg S., Gravitation and Cosmology (J. Wiley & Sons, N. Y., 1972).

    Google Scholar 

  52. Wheeler J. A., Phys. Rev. 97, (1955) 511

    Article  MathSciNet  ADS  MATH  Google Scholar 

  53. Wheeler J. A., “...The Lord praise you if by this beautiful method you can get all of the solutions of Einstein empty space field equations...” Private letter (1984).

    Google Scholar 

  54. Will C. M., Theory and Experiment in Gravitational Physics (revised ed. Cambridge University Press, Cambridge 1993).

    Google Scholar 

  55. Zakharov V. D., Gravitational waves in Einstein’s theory, (Halsted Press, N.Y. 1973).

    MATH  Google Scholar 

Download references

Acknowledgements

The results here exposed have been obtained in collaboration with F. Canfora, G. Sparano, A. Vinogradov and P. Vitale.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gaetano Vilasi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Vilasi, G. (2010). Gravitational Fields with 2-Dimensional Killing Leaves and the Gravitational Interaction of Light. In: Ciufolini, I., Matzner, R. (eds) General Relativity and John Archibald Wheeler. Astrophysics and Space Science Library, vol 367. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3735-0_13

Download citation

Publish with us

Policies and ethics