Skip to main content

Search for Gravitational Waves with Resonant Detectors

  • Chapter
  • First Online:
General Relativity and John Archibald Wheeler

Part of the book series: Astrophysics and Space Science Library ((ASSL,volume 367))

Abstract

The search for Gravitational Waves began more than 40 years ago by initiative of Joe Weber. Since then two types of instrumentation have been developed: the large interferometers and the resonant detectors. In this review paper we deal with the resonant detectors: ALLEGRO, AURIGA, EXPLORER, NAUTILUS and NIOBE. These detectors established upper limits for gravitational wave bursts. Since 1998 up to 2004 coincident events were searched for between EXPLORER and NAUTILUS. Excess coincidences are found when the detectors are favorably oriented with respect to the Galactic Disk.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Still today a few scientists believe that GW are just ripples in the space–time of mathematics. Einstein himself, in collaboration with N. Rosen, for a while doubted about the physical existence of GW (see Ref. [6]).

  2. 2.

    Although this algorithm was already known [23].

  3. 3.

    Already several years ago Joe Weber pointed out this feature of an oscillator with a very low noise amplifier.

  4. 4.

    In the conclusions of the 1998 paper that was presented to the IGEC collaboration in 1999 and 2000:…we find an excess of coincidences at zero time delay in the direction of the galactic centre.

References

  1. Will C M 1981 Theory and Experiment in Gravitational Physics (Cambridge University Press, Cambridge, United Kingdom)

    Google Scholar 

  2. Thorne K S 1987 “Gravitational Radiation”, in Hawking, S W, and Israel, W., eds., 300 Years of Gravitation, 330–458, (Cambridge University Press, Cambridge, United Kingdom)

    Google Scholar 

  3. Misner C W, Thorne K S Wheeler J A, Gravitation W.H. Freemn and Company (1970)

    Google Scholar 

  4. Ciufolini I. and Wheeler J.A. Gravitation and Inertia, Princeton Series in Physics (1995)

    Google Scholar 

  5. Amaldi E, Pizzella G in De Finis, F., ed. 1979 Relativity, Quanta, and Cosmology in the development of the scientific thought of Albert Einstein, 1–230, (Johnson Reprint Corp., Academic Press)

    Google Scholar 

  6. Kennefick D., Einstein versus Physical Review, Physics Today September 2005.

    Google Scholar 

  7. Schutz B F 1995 Sources of Gravitational Radiation for Detectors of the 21st Century, Coccia, E., Pizzella, G., Ronga, F., eds., Proceedings of the First Edoardo Amaldi Conference on Gravitational Wave Experiments, 3–17, (World Scientific, Singapore)

    Google Scholar 

  8. Blair D G ed. 1991 The Detection of Gravitational Waves, (Cambridge University Press, Cambridge, United Kingdom)

    Google Scholar 

  9. Ferrari V, Palomba C 1998 Int. J. Mod. Phys. D7 825–848Ferrari V et al 1999 Mon. Not. Roy. Astron. Soc. 303:247

    ADS  Google Scholar 

  10. Brustein R et al 1995 Phys. Lett. B, 361, 45–51

    Article  MathSciNet  ADS  Google Scholar 

  11. Weber J 1961 “General Relativity and Gravitational Waves”, (Interscience, New York)

    Google Scholar 

  12. Weber J 1960 Phys. Rev., 117 (1), 306–313

    Article  MathSciNet  ADS  MATH  Google Scholar 

  13. Weber J 1968 Phys. Rev. Lett., 20 (23), 1307–1308

    Article  ADS  Google Scholar 

  14. Weber J 1969 Phys. Rev. Lett., 22 (24), 1320–1324

    Article  ADS  Google Scholar 

  15. Hulse R A, Taylor J H 1975 Astrophys. J., 195, L51–L53Taylor J H, Weisberg J M 1982 Astrophys. J., 253, 908–920

    Article  ADS  Google Scholar 

  16. Boughn S P et al 1982 Astrophys. J., 261, L19–L22

    Article  ADS  Google Scholar 

  17. Astone P et al 1993 Phys. Rev. D, 47 (2), 362–375

    Article  ADS  Google Scholar 

  18. Ruffini R, Wheeler J A 1969 “Relativistic Cosmology and Space Plattforms”, Moore, A.F., Hardy, V., eds., Proceedings of an ESRO Colloquium, 45–174, (European Space Research Organisation)

    Google Scholar 

  19. Weinberg S 1972 Gravitation and Cosmology, (John Wiley & Sons)

    Google Scholar 

  20. Pizzella G 1975 Rivista del Nuovo Cimento, 5 (3), 369–397

    Article  ADS  Google Scholar 

  21. Pallottino G V, Pizzella G Nuovo Cim. C4:237–283, 1981

    Article  ADS  Google Scholar 

  22. Gibbons G W, Hawking S W Phys. Rev. D4, 2191 (1971)

    Google Scholar 

  23. Papoulis A ”Probability, Random variables and stochastic process” McGrow-Hill Book Co., New York (1965)

    Google Scholar 

  24. Bonifazi P el al., Il Nuovo Cimento 1c, 465 (1978)

    Google Scholar 

  25. Pizzella G Il Nuovo Cimento 2C, 209 (1979).

    ADS  Google Scholar 

  26. Amaldi E et al. Nuovo Cim. C1:341–359,1978

    ADS  Google Scholar 

  27. Amaldi et al., Nuovo Cim. C1:497–509,1978

    ADS  Google Scholar 

  28. Astone P Bonifazi P Pallottino G V Pizzella G Il Nuovo Cimento 17, 713 (1994)

    Article  ADS  Google Scholar 

  29. Pallottino G V, Pizzella G in “Data Analysis in Astronomy III” pag. 361, Ed. Di Gesu V, Scarsi L, Crane P, Friedman J H, Levialdi S, Maccarone M C Plenum Press 1998.

    Google Scholar 

  30. Pizzella G in “Gravitational Waves” Ed. Ciufolini, Gorini, Moschella, Fre’ Institute of Physics, pag. 91 (2001)

    Google Scholar 

  31. Astone P et al, Il Nuovo Cimento 20, 9 (1997)

    ADS  Google Scholar 

  32. Astone P, D’Antonio S Pizzella G 2000 Phys. Rev. D 62 042001

    Article  ADS  Google Scholar 

  33. Astone P, Pallottino G V, Pizzella G 1997 Class. Quantum Grav., 14, 2019–2030

    Article  ADS  Google Scholar 

  34. Ferrari V, Weber J et al 1982 Phys. Rev. D, 25, 2471–2486

    Article  ADS  Google Scholar 

  35. Amaldi E et al 1989 Astron. Astrophys., 216, 325–332

    ADS  Google Scholar 

  36. Astone P et al 1999 Astroparticle Physics 10 83–92

    Article  ADS  Google Scholar 

  37. Astone P et al 1999 Phys. Rev. D, 59, 122001

    Article  ADS  Google Scholar 

  38. Mauceli E et al 1996 Phys. Rev. D 54 1264

    Article  ADS  Google Scholar 

  39. Blair D G et al 1995 Phys. Rev. Lett. 74 1908

    Article  ADS  Google Scholar 

  40. Astone P et al 1997 Astroparticle Physics 7 231–243

    Article  ADS  Google Scholar 

  41. Cerdonio M et al 1997 Class. Quant. Grav. 14 1491–1494

    Article  ADS  Google Scholar 

  42. Allen Z A et al 2000 Phys. Rev. Lett. 85 5046

    Article  ADS  Google Scholar 

  43. Astone P et al 1991 Z. Phys. C, 50, 21–29

    Article  Google Scholar 

  44. Astone P et al., Eur. Phys. J. C5:651–664,1998

    ADS  Google Scholar 

  45. Modestino G, Pizzella G and Ronga F LNF - 05 / 27(IR)

    Google Scholar 

  46. Allega A M and Cabibbo N Lett. Nuovo Cimento 38, 263 (1983)

    Google Scholar 

  47. Bernard V, De Rujula A and Lautrup B Nucl. Phys. B 242, 93(1984)

    Article  ADS  Google Scholar 

  48. Buonomo B et al., Astropart. Phys. 24 65–74 (2005)

    Google Scholar 

  49. Astone P et al., Phys. Rev. Lett. 84 14–17 (2000)

    Article  ADS  Google Scholar 

  50. Astone P et al., Phys. Lett. B499 16–22 (2001)

    ADS  Google Scholar 

  51. Astone P et al., Phys. Lett. B540 179–184 (2002)

    ADS  Google Scholar 

  52. Astone P et al., Phys. Rev. Lett. 91:111101, 2003.

    Article  ADS  Google Scholar 

  53. Astone P et al, Class. Quant. Grav. 18, 243 (2001)

    Article  ADS  MATH  Google Scholar 

  54. Astone P et al, Class. Quant. Grav. 19, 5449 (2002)

    Article  ADS  MATH  Google Scholar 

  55. Finn, L S Class. Quant. Grav. 20, L37 (2003)

    Article  ADS  MATH  Google Scholar 

  56. Astone P et al. Class. Quant. Grav 20, S785 (2003)

    Article  ADS  Google Scholar 

  57. Pizzella, G. : 2003 Tenth Marcel Grossmann Meeting on General Relativity, (M. Novello, S. Perez-Bergliaffa, R. Ruffini, Eds.)

    Google Scholar 

  58. Babusci D et al., Astron. Astrophys. 421:811–813, 2004.

    Google Scholar 

  59. Roe B P 2001 Springer, Probability and Statistics in Experimental Physics, pag. 164

    Google Scholar 

  60. Modena I and Pizzella G Int. J. Mod. Phys. D15:485–491, 2006.

    ADS  Google Scholar 

Download references

Acknowledgements

I am indebted with the collaborators of the ROG group, who, in many years of hard work, have brought a significant contribution to the production of the experimental data and to their interpretation. I am also indebted with William Hamilton and David Blair for useful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guido Pizzella .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Pizzella, G. (2010). Search for Gravitational Waves with Resonant Detectors. In: Ciufolini, I., Matzner, R. (eds) General Relativity and John Archibald Wheeler. Astrophysics and Space Science Library, vol 367. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3735-0_12

Download citation

Publish with us

Policies and ethics