Skip to main content

Microfluidic Packaging Process

  • Chapter
  • First Online:
Book cover CMOS Capacitive Sensors for Lab-on-Chip Applications

Part of the book series: Analog Circuits and Signal Processing ((ACSP))

  • 2037 Accesses

Abstract

A CMOS-based LoC system would require efficient microfluidic packaging to protect the circuitry from the biological and chemical analytes, as well as the external environment. Microfluidic packaging is also critical to direct the fluids towards the embedded sensors or actuators for analysis. Ideally, these microfluidic packaging components, including micro-channels, -chambers, -fittings, -valves and -pumps should be performed using a low temperature process with reliable hermetic bonding [278]. The leakage of analytes (especially of charged molecules, as is the case with many bioanalytes) from microfluidic components may increase the parasitic capacitances or resistances and thus affect the circuit characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Y. Chao, Y. Huang, B.L. Hassler, R.M. Worden, A.J. Mason, Amperometric electrochemical microsystem for a miniaturized protein biosensor array. IEEE Trans. Biomed. Circuits Syst. 3(3), 160-168 (2009)

    Article  Google Scholar 

  2. K. Fife, A. El-Gamal, H.S.P. Wong, A multi-aperture image sensor with 0.7 μm pixels in 0.11 μm CMOS technology. IEEE J. Solid State Circuits 43(12), 2990-3005 (2008)

    Google Scholar 

  3. E. Ghafar-Zadeh, M. Sawan, D. Therriault, CMOS-based capacitive sensor lab-on-chip: a multidisciplinary approach. Analog Integr. Circuits Signal Process. 59(1) (2009)

    Google Scholar 

  4. E. Ghafar-Zadeh, M. Sawan, D. Therriault, A 0.18-μm CMOS capacitive sensor Lab-on-Chip. Sens. Actuat. A: Phys. 141(2) (2008)

    Google Scholar 

  5. M.A. Miled, M. Sawam, E. Ghafar-Zadeh, A dynamics decoder for first-order sigma-delta modulators dedicated to lab-on-chip applications. IEEE Trans. Signal Process. 57(10), 4076-4084 (2009)

    Article  Google Scholar 

  6. S. Hardt, F. Schönfeld, Microfluidic Technologies for Miniaturized Analysis Systems (Springer, New York, 2007)

    Book  Google Scholar 

  7. M. Agirregabiria, F.J. Blanco, J. Berganzo, M.T. Arroyo, A. Fullaondo, K. Mayora, J.M. Ruano-López, Fabrication of SU-8 multilayer microstructures based on successive CMOS compatible adhesive bonding and releasing steps. Lab Chip 5, 545-552 (2005)

    Article  Google Scholar 

  8. N.H. Tea, V. Milanovic, C.A. Zincke, J.S. Suehle, M. Gaitan, M.E. Zaghloul, J. Geist, Hybrid postprocessing etching for CMOS-compatible MEMS. J. Microelectromechan. Syst. 6(4), 363-372 (1997)

    Article  Google Scholar 

  9. P. Zheng-chun, L. Zhong-geng, M. Tondra, L. Chang-geng, M. Zhang, K. Lian, J. Goettert, J. Hormes, CMOS compatible integration of three-dimensional microfluidic systems based on low-temperature transfer of SU-8 films. J. Microelectromech. Syst. 15(3) (2006)

    Google Scholar 

  10. F.J. Blanco, M. Agirregabiria, J. Garcia, J. Berganzo, M. Tijero, M.T. Arroyo, J.M. Ruano, I. Aramburu, Kepa Mayora, Novel three-dimensional embedded SU-8 microchannels fabricated using a low temperature full wafer adhesive bonding. Micromech. Microeng. 14 (2004)

    Google Scholar 

  11. G. Kaltsas, D.N. Pagonis, A.G. Nassiopoulou, Planar CMOS compatible process for the fabrication of buried microchannels in silicon, using porous-silicon technology. J. Microelectromech. Syst. 12(6), 863-872 (2003)

    Article  Google Scholar 

  12. A. Rasmussen, M.E. Zaghloul, CMOS microfluidic fabrication technology for biomedicalapplications. 42nd Midwest Symposium on Circuits and Systems 2, 791-794 (1999)

    Google Scholar 

  13. E. Ghafar-Zadeh, M. Sawan, D. Therriault, A New approach for the integration of microfluidic structures to microelectronic devices. 4th Canadian Workshop on CMC Microsystems MEMS

    Google Scholar 

  14. P.F. Man, D.K. Jones, C.H. Mastrangelo, Microfluidic plastic capillaries on silicon substrates: a new inexpensive technology for bioanalysis chips. IEEE Micro Electro Mechanical Systems (MEMS), 1997

    Google Scholar 

  15. M.A. Burns, B.N. Johnson, S.N. Brahmasandra, K. Handique, J.R. Webster, M. Krishnan, T.S. Sammarco, P.M. Man, D. Jones, D. Heldsinger, C.H. Mastrangelo, D.T. Burke. An integrated nanoliter DNA analysis device. Science 282(5388), 484-487 (16 October 1998)

    Google Scholar 

  16. A. Rasmussen, M. Gaitan, L.E. Locascio, M.E. Zaghloul, Fabrication techniques to realize CMOS-compatible microfluidicmicrochannels. J. Microelectromech. Syst. 10(2) (2001)

    Google Scholar 

  17. A. Rasmussen, Implementation and modeling of microfluidic components realized using CMOS technology. Angela, D.Sc., George Washington University, 2002

    Google Scholar 

  18. H. Lee, D. Ham, R.M. Westervelt, CMOS/microfluidic hybrid systems. Chapter III in CMOS Biotechnology (Springer, 2008)

    Google Scholar 

  19. H. Lee, Y. Liu, R.M. Westervelt, D. Ham, IC/microfluidic hybrid system for magnetic manipulation of biological cells. IEEE J. Solid State Circuits 41(6) (2006)

    Google Scholar 

  20. I. Chartier, C. Bory, A. Fuchs, D. Freida, N. Manaresi, M. Ruty, J. Bablet, L. Fulbert, Fabrication of hybrid plastic-silicon micro-fluidic devices for invidual cell manipulation by dielectrophoresis. Proc. SPIE 5345 (2004)

    Google Scholar 

  21. P. Sethu, C.H. Mastrangelo, Cast epoxy-based microfluidic systems and their application in biotechnology. Sens. Actuat. B: Chem. 98(2), 337-346 (2004)

    Article  Google Scholar 

  22. P. Sethu, C.H. Mastrangelo, Polyethylene glycol (PEG)-based actuator for nozzle-diffuser pumps in plastic microfluidic systems. Sens. Actuat. A: Phys. 104(3), 283-289 (2003)

    Article  Google Scholar 

  23. P. Vulto, N. Glade, L. Altomare, J. Bablet, L. Tin, G. Del-Medoro, I. Chartier, N. Manaresi, M. Tartagni, R. Guerrieri, Microfluidic channel fabrication in dry film resist for production and prototyping of hybrid chips. J. Lab chip 5 (2005)

    Google Scholar 

  24. J.H. Song, M.J. Edirisinghe, J.R.G. Evans, Formulation and multilayer jet printing of ceramic inks. J. Am. Ceram. Soc. 82(12) (1999)

    Google Scholar 

  25. S.L. Morissette, J.A. Lewis, P.G. Clem, J. Cesarano, D.B. Dimos, Direct-write fabrication of Pb(Nb,Zr,Ti)O3 devices: influence of paste rheology on print morphology and component properties, J. Am. Ceram. Soc. 84(11) (2001)

    Google Scholar 

  26. K.A.M. Seerden, N. Reis, J.R.G. Evans, P.S. Grant, J.W. Halloran, B. Derby, Ink-jet printing of wax-based alumina suspensions. J. Am. Ceram. Soc. 84(11) (2001)

    Google Scholar 

  27. J.A. Lewis, Direct-write assembly of ceramics from colloidal inks, Current. Opin. Solid State Mater. Sci. 6(3) (2002)

    Google Scholar 

  28. M. Xu, G.M. Gratson, E.B. Duoss, R.F. Shepherd, J.A. Lewis, Biomimetic silicification of 3D polyamine-rich scaffolds assembled by direct ink writing. Soft Matter 16(9) (2006)

    Google Scholar 

  29. G.M. Gratson, F. Garcia-Santamaria, V. Lousse, M. Xu, S. Fan, J.A. Lewis, P.V. Braun, Direct-write assembly of three-dimensional photonic crystals: conversion of polymer scaffolds to silicon hollow-woodpile structures. Adv. Mater. 18(4) (2006)

    Google Scholar 

  30. J.L. Simon, S. Michna, J.A. Lewis, E.D. Rekow, V.P. Thompson, J.E. Smay, A. Yampolsky, J.R. Parsons, J.L. Ricci, In vivo bone response to 3D periodic hydroxyapatite scaffolds assembled by direct ink writing. J. Biomed. Mater. Res. A 26(28) (2007)

    Google Scholar 

  31. J.G. Dellinger, J. Cesarano 3rd, RD Jamison Robotic deposition of model hydroxyapatite scaffolds with multiple architectures and multiscale porosity for bone tissue engineering. J. Biomed. Mater. Res. A 82(2) (2007)

    Google Scholar 

  32. D. Therriault, S.R. White, J.A. Lewis, Chaotic mixing in three-dimensional microvascular networks. Nat. Mater. 2(4) (2003)

    Google Scholar 

  33. E. Ghafar-Zadeh, M. Sawan, D. Therriault, A microfluidic packaging technique for lab-on-chip applications. EEE Techol. Adv. Pack. 32(2) (2009)

    Google Scholar 

  34. M. Hajj-Hassan, T. Gonzalez, E. Ghafar-Zadeh, H. Djeghelian, V. Chodavarapu, M. Andrews, D. Therriault, Direct-dispense polymeric waveguides platform for optical chemical sensors. Sensors 8(12) (2008)

    Google Scholar 

  35. M. Kuhn, T. Napporn, M. Meunier, S. Vengallatore, D. Therriault, Direct-write microfabrication of single-chamber micro solid oxide fuel cells. J. Micromech. Microeng. 18(1) (2008)

    Google Scholar 

  36. M. Kuhn, T. Napporn, M. Meunier, D. Therriault, S. Vengallatore, Direct-write microfabrication of single-chamber solid oxide fuel cells with interdigitated electrodes. Mater. Res. Soc. Symp. Proc. 972 (2007)

    Google Scholar 

  37. M. Kuhn, T. Napporn, M. Meunier, D. Therriault, S. Vengallatore, Fabrication and testing of coplanar single-chamber micro solid oxide fuel cells with geometrically complex electrodes. J. Power Source. 177(1) (2008)

    Google Scholar 

  38. T. Hibino, H. Iwahara, Simplification of solid oxide fuel cell systems using partial oxidation of methane. Chem. Lett. 7 (1993)

    Google Scholar 

  39. M. Nagao, M. Yano, K. Okamoto, A. Tomita, Y. Uchiyama, N. Uchiyama, T. Hibino, A single-chamber sofc stack: energy recovery from engine exhaust. Fuel Cell. 8(5) (2008)

    Google Scholar 

  40. Z. Shao, S.M. Haile, J. Ahn, P.D. Ronney, Z. Zhan, S.A. Barnett, A thermally self-sustained micro solid-oxide fuel-cell stack with high power density. Nature 435(7043) (2005)

    Google Scholar 

  41. B. Morel, R. Roberge, S. Savoie, T. W. Napporn, M. Meunier, An experimental evaluation of the temperature gradient in solid oxide fuel cells. Electrochem. Solid State Lett. 10(2) (2007)

    Google Scholar 

  42. D. Therriault, R.F. Shepherd, S.R. White, J.A. Lewis, Fugitive inks for direct-write assembly of 3-D microvascular networks. Adv. Mater. 17(4)

    Google Scholar 

  43. B.R. Flachsbart, K. Wong, J.M. Iannacone, E.N. Abante, R.L. Vlach, P.A. Rauchfuss, P.W. Bohn, J.V. Sweedler, M.A. Shannon, Design and fabrication of a multilayered polymer microfluidic chip with nanofluidic interconnects via adhesive contact printing. Lab Chip 6, 667-674 (2006)

    Article  Google Scholar 

  44. X.B. Chen, W.J. Zhang, G. Schoenau, B. Surgenor, Off-line control of time-pressure dispensing processes for electronics packaging. IEEE Trans. Electron. Pack. Manuf. 26(4) (2003)

    Google Scholar 

  45. X.B. Chen, H. Ke, Effects of fluid properties on dispensing processes for electronics packaging. IEEE Trans. Electron. Pack. Manuf. 29(2) (2006)

    Google Scholar 

  46. E. Ghafar-Zadeh, M. Sawan, D. Therriault, Direct-write fabrication of microchannel in epoxy resin. ASME Mechanical Engineering Congress and Exposition(IMECE), Orlando, FL, 2005

    Google Scholar 

  47. H. Becker, C. Gärtner, Polymer microfabrication technologies for microfluidic systems. Anal. Bioanal. Chem. 39(1) (2008)

    Google Scholar 

  48. R.H. Liu, Q. Yu, D.J. Beebe, Fabrication and characterization of hydrogel-based microvalves. J. Microelectromech. Syst. 11(1) (2002)

    Google Scholar 

  49. T. Miyata, N. Asami, T. Uragami, A reversibly antigen-responsive hydrogel. Nature 399(766) (1999)

    Google Scholar 

  50. Liang Dong, Hongrui Jiang, Autonomous microfluidics with stimuli-responsive hydrogels. Soft Matter. 3(10) (2007)

    Google Scholar 

  51. J. Wang, Z. Chen, M. Mauk, K. Sheng Hong, M. Li, S. Yang, H.H. Baul, Self-actuated, thermo-responsive hydrogel valves for labon a chip. Biomed. Device. 7(4) (2005)

    Google Scholar 

  52. E. Ghafar-Zadeh, M. Sawan, V. Chodavarapu, A direct-write microfluidic fabrication process for CMOS-based Lab-on-Chip applications. Microelectron. Eng. 86(10) (2009)

    Google Scholar 

  53. M.L. Berre, G. Pandraud, P. Morfouli, M. Lallemand, The performance of micro heat pipes measured by integrated sensors. J. Micromech. Microeng. 16 (2006)

    Google Scholar 

  54. R. Bey-Oueslati, S. Martel, D. Therriaul, Micro heat pipe fabrication: high performance deposition platform for electronic industry. International Workshop on Microfactories, 2006

    Google Scholar 

  55. P. de la Fuentea, J.A. Etxeberriaa, J. Berganzob, J.M. Ruano-Lópezb, M.T. Arroyob, E. Castañoa, F.J. Graciaa, End-fire coupling of a SU-8 waveguide to a silicon mesa photodiode: Integrability in an optical analysis microsystem. Sens. Actuat. A: Phys. 123-124, 313-318 (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ebrahim Ghafar-Zadeh .

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Ghafar-Zadeh, E., Sawan, M. (2010). Microfluidic Packaging Process. In: CMOS Capacitive Sensors for Lab-on-Chip Applications. Analog Circuits and Signal Processing. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3727-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-90-481-3727-5_5

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-3726-8

  • Online ISBN: 978-90-481-3727-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics