Skip to main content

Capacitive Bio-interfaces

  • Chapter
  • First Online:
CMOS Capacitive Sensors for Lab-on-Chip Applications

Part of the book series: Analog Circuits and Signal Processing ((ACSP))

  • 2018 Accesses

Abstract

In Chapter 2, we discussed the design and implementation of sensing electrodes atop CMOS chip. The sensing electrodes are incorporated with biological substances for sensing purposes as shown in Fig. 3.1.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A. Hassibi, T.H. Lee, A Programmable 018-μ CMOS electrochemical sensor microarray for biomolecular detection. IEEE J. Sens. 6(6), 1380-1388 (2006)

    Article  Google Scholar 

  2. A. Balasubramanian, B. Bhuva, R. Mernaugh, F.R. Haselton, Si-based sensor for virus detection. IEEE J. Sens. 5(3), 340-344 (2005)

    Article  Google Scholar 

  3. C. Stagni, C. Guiducci, L. Benini, B. Ricco, S. Carrara, C. Paulus, M. Schienle, R. Thewes, A fully electronic label-free DNA sensor chip. IEEE J. Sens. 7(4) (2007)

    Google Scholar 

  4. C. Hagleitner, D. Lange, A. Hierlemann, O. Brand, H. Baltes, CMOS single-chip gas detection system comprising capacitive, calorimetric and mass-sensitive microsensors. IEEE J. Solid State Circuits, 37(12) (2002)

    Google Scholar 

  5. A. Romani, N. Manaresi, L. Marzocchi, G. Medoro, A. Leonardi, L. Altomare, M. Tartagni, R. Guerrieri, Capacitive sensor array for localization of bioparticles in CMOS lab-on-a-chip. Digest of Technical Papers, IEEE ISSCC Conference, 2004, pp. 224-225

    Google Scholar 

  6. S.B. Prakash, P. Abshire, On-chip capacitance sensing for cell monitoring applications. IEEE J. Sens. 7(3) (2007)

    Google Scholar 

  7. Y. Maruyama, K. Sawada, H. Takao, M. Ishida, A novel filterless fluorescence detection sensor for DNA analysis. IEEE Trans. Electron Devices 53(3), 553-558 (2006)

    Article  Google Scholar 

  8. M.I. Prodromidis, Impedimetric immunosensors-A review. Electrochimica Acta In Press

    Google Scholar 

  9. J.G. Guan, Y.Q. Miao, Q.J. Zhang, Impedimetric biosensors. J. Biosci. Bioeng. 97(4), 219-226 (2004)

    Google Scholar 

  10. A. Vermeulen, F. Devlieghere, K. Bernaerts, J. Van Impe, J. Debevere, Growth/no growth models describing the influence of pH, lactic and acetic acid on lactic acid bacteria developed to determine the stability of acidified sauces. Int. J. Food Microbiol. 119(3), 258-269 (2007)

    Article  Google Scholar 

  11. M. Barbaro, A. Bonfiglio, L. Raffo, A. Alessandrini, P. Facci, I. Barák, Fully electronic DNA hybridization detection by a standard CMOS biochip. Sens. Actuator. B: Chem. 118(1), 41-46 (2006)

    Article  Google Scholar 

  12. V. Nanduri, S. Balasubramanian, S. Sista, V.J. Vodyanoy, A.L. Simonian, Highly sensitive phage-based biosensor for the detection of β-galactosidase. Analytica Chimica Acta 589(2), 166-172 (2007)

    Article  Google Scholar 

  13. S. Carrara, V. Bhalla, C. Stagni, L. Benini, A. Ferretti, F. Valle, A. Gallotta, B. Riccò, B. Samorì, Label-free cancer markers detection by capacitance biochip. Sens. Actuator. B: Chem. 136(1), 163-172 (2009)

    Article  Google Scholar 

  14. L. Yao, M. Hajj-Hassan, E. Ghafar-Zadeh, A. Shabani, V. Chodavarapu, M. Zourob, CMOS capacitive sensor system for bacteria detection using phage organisms. IEEE Canadian Conference on Electrical and Computer Engineering (CCECE), Niagara Falls, 2008

    Google Scholar 

  15. V.M. Mirsky, M. Riepl, O.S. Wolfbeis, Capacitive monitoring of protein immobilization and antigen-antibody reactions on monomolecular alkylthiol films on gold electrodes. Biosens. Bioelectron. 12(9), 977-989 (1997)

    Article  Google Scholar 

  16. Z. Cheng, E. Wang, X. Yang, Capacitive detection of glucose using molecularly imprinted polymers. Biosens. Bioelectron. 16(3), 179-185 (2001)

    Article  Google Scholar 

  17. G.J. Yang, J.L. Huang, W.J. Meng, M. Shen, X.A. Jiao, A reusable capacitive immunosensor for detection of Salmonella spp based on grafted ethylene diamine and self-assembled gold nanoparticle monolayers. Anal. Chim. Acta 647(2), 159-166 (2009)

    Article  Google Scholar 

  18. E. Spiller, A. Schöll, R. Alexy, K. Kümmerer, G.A. Urban, A sensitive microsystem as biosensor for cell growth monitoring and antibiotic testing. Sens. Actuator. A: Phys. 130-131, 312-321 (2006)

    Article  Google Scholar 

  19. L. Yang, Y. Li, Detection of viable Salmonella using microelectrode-based capacitance measurement coupled with immunomagnetic separation. J. Microbiol. Meth. 64, 9-16 (2006)

    Article  Google Scholar 

  20. E. Ghafar-Zadeh, M. Sawan, Toward fully integrated CMOS based capacitive sensor for lab-on-chip applications. International Workshop on Medical Measurements and Applications (MeMeA) 2008. IEEE, May 2008, pp. 77-80

    Google Scholar 

  21. E. Ghafar-Zadeh, M. Sawan, Towards fully integrated Lab-on-Chip: design, assembly and experimental results. Int. J. Adv. Media Commun. 3(1), 154-166 (2009)

    Article  Google Scholar 

  22. U.A. Nuber, DNA Microarrays (Tylor & Francis, Berlin/Germany, 2005)

    Google Scholar 

  23. H. Mohamed, L.D. McCurdy, D.H. Szarowski, S. Duva, J.N. Turner, M. Caggana, Development of a rare cell fractionation device: application for cancer detection. IEEE Trans. NanoBiosci. 3(4), 251-256 (2004)

    Article  Google Scholar 

  24. S. Nagrath, L.V. Sequist, S. Maheswaran, D.W. Bell, D. Irimia, L. Ulkus, M.R. Smith, E.L. Kwak, S. Digumarthy, A Muzikansky, P. Ryan, U.J. Balis, R.G. Tompkins, D.A. Haber, M. Toner, Isolation of rare circulating tumour cells in cancer patients by microchip technology. Nature 450 (2007)

    Google Scholar 

  25. E.P. Anderson, A CMOS label-free DNA microarray based on charge sensing. Ph.D., Stanford University, 2008

    Google Scholar 

  26. S. Parikh, A CMOS imager for DNA detection. M.A.Sc., University of Toronto, 2007

    Google Scholar 

  27. X. Chen, L. Jiong, W. Yijin, C. Lu, L. Zuhong, M. Chan. A CMOS-compatible DNA microarray using optical detection together with a highly sensitive nanometallic particle protocol. IEEE Electron Device Lett. 26(4), 240-242 (2005)

    Article  Google Scholar 

  28. T.D. Huang, S. Sorgenfrei, P. Gong, R. Levicky, K.L. Shepard, A 018-μm CMOS array sensor for integrated time-resolved fluorescence detection. IEEE J. Solid State Circuit 44(5), 1644-1654 (2009)

    Article  Google Scholar 

  29. G. Sigalov, J. Comer, G. Timp, A. Aksimentiev, Detection of DNA sequences using an alternating electric field in a nanopore capacitor. Nano Lett. 8(1), 56-63 (2008)

    Article  Google Scholar 

  30. M. Barbaro, A. Bonfiglio, L. Raffo, A. Alessandrini, P. Facci, I. BarakBarak. A CMOS, fully integrated sensor for electronic detection of DNA hybridization. IEEE Electron Device Lett. 27(7), (2006)

    Google Scholar 

  31. C. Berggren, P. StaÊlhandske, J. Brundell, G. Johansson, A feasibility study of a capacitive biosensor for direct detection of DNA hybridization. Electroanalysis 11(3) (1999)

    Google Scholar 

  32. C. Guiducci, C. Stagni, G. Zuccheri, A. Bogliolo, L. Beninia, B. Samorıb, B. Riccò, DNA detection by integrable electronics. Biosens. Bioelectron. 19, 781-787 (2004)

    Article  Google Scholar 

  33. C. Stagni, C. Guiducci, L. Benini, B. Ricco, S. Carrara, C. Paulus, M. Schienle, R. Thewes, A fully electronic label-free DNA sensor chip. IEEE Sens. J. 7(4), 577-585 (2007)

    Article  Google Scholar 

  34. J.P. Cloareca, J.R. Martina, C. Polychronakosc, I. Lawrenceb, M.F. Lawrenceb, E. Souteyrand, Functionalization of Si/SiO2 substrates with homooligonucleotides for a DNA biosensor. Sens. Actuator B: Chem. 58(1), 394-398 (1999)

    Article  Google Scholar 

  35. M.L. Yarmush, M. Toner, R. Plonsey, J.D. Bronzino, Biotechnology for Biomedical Engineers (CRC, Raton, London, New York, Washington, DC, 2005)

    Google Scholar 

  36. P.B. Luppa, L.J. Sokollb, D.W. Chan, Immunosensors - principles and applications to clinical chemistry. Clin. Chim. Acta 314(1), 1-26 (2001)

    Article  Google Scholar 

  37. E. Prusak-Sochaczewski, J.H.T. Luong, Detection of human transferrin by the piezoelectric crystal. Anal. Lett. 23(2), 183-194 (1990)

    Google Scholar 

  38. S.Q. Hua, Z.Y. Wua, Y.M. Zhoua, Z.X. Caoa, G.L. Shen, R.Q. Yu, Capacitive immunosensor for transferrin based on an o-aminobenzenthiol oligomer layer. Anal. Chim. Acta 458(2), 297-304 (2002)

    Article  Google Scholar 

  39. H. Berneya, J. Aldermana, W. Lanea, J.K. Collins, A differential capacitive biosensor using polyethylene glycol to overlay the biolayer. Sens. Actuat. B: Chem. 44(1), 578-584 (1997)

    Article  Google Scholar 

  40. S. Satyanarayanaa, D.T. McCormickb, A. Majumdar, Parylene micro membrane capacitive sensor array for chemical and biological sensing. Sens. Actuat. B: Chem. 115(1), 494-502 (2006)

    Article  Google Scholar 

  41. J.W. Chunga, S.D. Kima, R. Bernhardtb, J.C. Pyun, Application of SPR biosensor for medical diagnostics of human hepatitis B virus (hHBV). Sens. Actuat. B: Chem. 111(11), 416-422 (2005)

    Article  Google Scholar 

  42. T.H.J. Heutmekersa, M.G.E.G. Bremer, W. Haasnoota, M.W.F. Nielen, A rapid surface plasmon resonance (SPR) biosensor immunoassay for screening of somatotropins in injection preparations. Anal. Chim. Acta 586(1), 239-245 (2007)

    Article  Google Scholar 

  43. C. Berggren, B. Bjarnason, G. Johansson, Capacitive biosensors. Electroanalysis 13(3), 173-180

    Google Scholar 

  44. K. Asami, E. Gheorghiu, T. Yonezawa, Real-time monitoring of yeast cell division by dielectric spectroscopy. Biophys. J. 76(6), 3345-3348 (1999)

    Article  Google Scholar 

  45. A.S. Yuwono, P.S. Lammers, Odor pollution in the environment and the detection instrumentation. Intl. J. Sci. Res. Develop. Agric. Eng. 6 (July 2004)

    Google Scholar 

  46. E. Ghafar-Zadeh, M. Sawan, D. Therriault, A 0.18-μm CMOS capacitive sensor Lab-on-Chip. Sens. Actuat. A: Phys. 141(2) (2008)

    Google Scholar 

  47. E. Ghafar-Zadeh, D. Therriault, M. Sawan, Programmable three-dimensional microfluidic fabrication by direct-write assembly. NSTI Nanotech, Ecole Polytechnique de Montréal, CA, 2006

    Google Scholar 

  48. E. Ghafar-Zadeh, Sawan, D. Therriault, Laboratoires-sur-puces: Nouvelle technologie de diagnostic cellulaire et moléculaire. IEEE Can. Rev. 58 (2008)

    Google Scholar 

  49. P. Antoniou, J. Hamilton, R. Jain, B. Holloway, B. Koopman, G. Lyberatos, S. A. Svoronos, Effect of temperature and pH on the effective maximum specific growth rate of nitrifying bacteria. Water Res. 24(1) (1990)

    Google Scholar 

  50. EE. Ghafar-Zadeh, M. Sawan, V.P. Chodavarapu, Bacteria growth monitoring through differential CMOS capacitive sensor, TBCAS, Submitted 2009

    Google Scholar 

  51. M. Zourob, S. Elwary, A. Turner, Principles of Bacterial Detection: Biosensors, Recognition Receptors and Microsystems (Springer, New York, 2007)

    Google Scholar 

  52. G. Decher, J.B. Schlenoff, Multilayer thin films. Chapter I of Polyelectrolyte Multilayers, an Overview (Wiley-VCH Verlag GmbH, Weinheim, 2002)

    Google Scholar 

  53. X. Chen, X. Yan, K.A. Khor, B. Kang, Multilayer assembly of positively charged polyelectrolyte and negatively charged glucose oxidase on a 3D Nafion network for detecting glucose. Biosens. Bioelectron. 22(12) (2007)

    Google Scholar 

  54. S. Zhang. W. Yang, Y. Niu, Y. Li, M. Zhang, C. Sun, Construction of glucose biosensor oxidase onto multilayers of polyelectrolyte/nanoparticles. Anal. Bioanal. Chem. 384, 736-741 (2006)

    Google Scholar 

  55. B. Thierry, F.M. Winnik, Y. Merhi, J. Silver, M. Tabrizian, Bioactive coatings of endovascular stents based on polyelectrolyte multilayers. Biomolecular 15(7) (2003)

    Google Scholar 

  56. F. Durstock, M.F. Rubner, Dielectric properties of polyelectrolyte multilayers. Langumuir 17(25) (2001)

    Google Scholar 

  57. A.L. Hillberg, M. Tabrizian, Biorecognition through layer-by-layer polyelectrolyte assembly: in-situ hybridization on living cells. Biomolecoular 15(7) (2006)

    Google Scholar 

  58. E. Ghafar-Zadeh, M. Sawan, A charge based sigma delta capacitive sensor for ultrathin polyelectrolyte layer detection. Northeast Workshop on Circuits and Systems (NEWCAS) 2008

    Google Scholar 

  59. A. Sze, D. Erickson, L. Ren, D. Li, Zeta-potential measurement using the Smoluchowski equation and the slope of the current-time relationship in electroosmotic flow. J. Colloid Interface Sci. 261(2), 402-410 (2003)

    Article  Google Scholar 

  60. E. Ghafar-Zadeh, M. Sawan, A core-CBCM sigma delta capacitive sensor array dedicated to lab-on-chip applications. Sens. Actuat. A: Phys. 144(2) (2008)

    Google Scholar 

  61. Jonathan M. Cooper, Anthony E.G. Cass, Biosensors (Oxford University Press, Oxford, 2003)

    Google Scholar 

  62. J.V. Sagen, L. Bjørkhaug, J. Molnes, H. Raeder, L. Grevle, O. Søvik, A. Molven, P.R. Njølstad, Diagnostic screening of MODY2/GCK mutations in the Norwegian MODY Registry. Pediatr. Diabetes 9(5), 442-449 (2008)

    Article  Google Scholar 

  63. H.J. Park, S.K. Kim, K. Park, H.K. Lyu, C.S. Lee, S.J. Chung, W.S. Yun, M. Kim, B.H. Chung, An ISFET biosensor for the monitoring of maltose-induced conformational changes in MBP. FEBS Lett. 583(1) (2009)

    Google Scholar 

  64. D.S. Kim, Y.T. Jeong, H.J. Park, J.K. Shin, P. Choi, J.H. Lee, G. Lim, An FET-type charge sensor for highly sensitive detection of DNA sequence. Biosens. Bioelectron. 20(1) (2004)

    Google Scholar 

  65. A. Trifiro, Glucose sensor and uses thereof. U.S. Patent 0232370 A1, 2003

    Google Scholar 

  66. R. Lumbroso, N. Naas, L.K. Beitel, M.F. Lawrence, M.A. Trifiro, Novel bioimpedance sensor for glucose recognition. IEEE Conference on Signals, Systems and Electronics (ISSE’07), Montreal, 2007

    Google Scholar 

  67. G.B.B. Kristensen, K. Nerhus, G. Thue, S. Sandberg, Standardized evaluation of instruments for self-monitoring of blood glucose by patients and a technologist. Clin. Chem. 50(6), 1068-1071 (2004)

    Article  Google Scholar 

  68. Abotte Inc http://www.abbottdiabetescare.com/

  69. A. Salimi, E. Sharifi, A. Noorbakhsh, S. Soltanian, Immobilization of glucose oxidase on electrodeposited nickel oxide nanoparticles: direct electron transfer and electrocatalytic activity. Biosens. Bioelectron. 22(12), 3146-3153 (2007)

    Article  Google Scholar 

  70. J. Wange, Electrochemical glucose biosensors. Chem. Rev. 108(2), 814-825 (2008)

    Google Scholar 

  71. K. Aoki, H. Suzuki, Y. Ishimaru, S. Toyama, Y. Ikariyama, T. Iida, Thermophilic glucokinase-based sensors for the detection of various saccharides and glycosides. Sens. Actuat. B: Chem. 108(1), 727-732 (2005)

    Article  Google Scholar 

  72. S. D’Auria, N. DiCesare, M. Staiano, Z. Gryczynski, M. Rossi, J.R. Lakowicz, A novel fluorescence competitive assay for glucose determinations by using a thermostable glucokinase from the thermophilic microorganism Bacillus stearothermophilus. Anal. Biochem. 303(2) (2002)

    Google Scholar 

  73. K. Kamta, M. Mitsuya, T. Nishimura, J. Eiki, Y. Nagata, Structural basis of allosteric regulation of the monimeric allosteric enzyme human glucokinase. Structure 12(13), 429-438 (2004)

    Article  Google Scholar 

  74. J. Molnes, L. Bjorkhaug, O. Sovik, P.R. Njolstad, T. Flatmark, Catalytic activation of human glucokinase by substrate binding-residue contact involved in the binding of D-glucose to the super-open form and conformational transitions. FEBS J. 275(10), 2467-2481 (2008)

    Article  Google Scholar 

  75. E. Ghafar-Zadeh, S.F. Chowdhury, A. Aliakbar, R. Lambrose, V. Chodavarapu, L. Beital, M. Sawan, M. Trifiro, Handheld impedance biosensor system using engineered proteinaceous receptors. Submitted to Biomedical Microdevices, July 2009

    Google Scholar 

  76. A. Ulman, Formation and structure of self-assembled monolayers. Chem. Rev. 96(4), 1533-1554 (1996)

    Article  Google Scholar 

  77. F. Tao, Steven L. Bernasek, Understanding odd−even effects in organic self-assembled monolayers. Chem. Rev. 107(5), 1408-1453 (2007)

    Google Scholar 

  78. J.H. Fendler, Chemical self-assembly for electronic applications. Chem. Mat. 13(2), 3196-3210 (2001)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ebrahim Ghafar-Zadeh .

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Ghafar-Zadeh, E., Sawan, M. (2010). Capacitive Bio-interfaces. In: CMOS Capacitive Sensors for Lab-on-Chip Applications. Analog Circuits and Signal Processing. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3727-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-90-481-3727-5_3

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-3726-8

  • Online ISBN: 978-90-481-3727-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics