Skip to main content

Part of the book series: Analog Circuits and Signal Processing ((ACSP))

  • 2007 Accesses

Abstract

Laboratory-on-Chip (LoC) is a multidisciplinary approach used for the miniaturization, integration and automation of biological assays or procedures in analytical chemistry [1-3]. Biology and chemistry are experimental sciences that are continuing to evolve and develop new protocols. Each protocol offers step-by-step laboratory instructions, lists of the necessary equipments and required biological and/or chemical substances [4-7]. A biological or chemical laboratory contains various pieces of equipment used for performing such protocols and, as shown in Fig. 1.1, the engineering aspect of LoC design is aiming to embed all these components in a single chip for single-purpose applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. C.D. Chin, V. Linder, S.K. Sia, Lab-on-a-chip devices for global health: Past studies and future opportunities. Lab Chip 5(1), 41-57 (2007)

    Article  Google Scholar 

  2. H. Craighead, Future lab-on-a-chip technologies for interrogating individual molecules. Nature 442(7101), 387-393 (2006)

    Article  Google Scholar 

  3. A. Chow, Lab-on-a-chip: Opportunities for chemical engineering. AIChE J 48(8), 1590-1595 (2002)

    Article  Google Scholar 

  4. R.S. Tuan, C.W. Lo, Developmental Biology Protocols: Methods in Molecular Biology, vol. I (Human Press Inc., Totowa, New Jersey, 2000)

    Google Scholar 

  5. R.S. Tuan, C.W. Lo, Developmental Biology Protocols: Methods in Molecular Biology, vol. II (Human Press Inc., Totowa, New Jersey, 2000)

    Google Scholar 

  6. R.S. Tuan, C.W. Lo, Developmental Biology Protocols: Methods in Molecular Biology, vol. III (Human Press Inc., Totowa, New Jersey, 2000)

    Google Scholar 

  7. J.R. Harris, J. Graham, D. Rickwood, Cell Biology Protocols (Wiely, West Sussex, England, 2006)

    Book  Google Scholar 

  8. R.P. Hertzberg, A.J. Pope, High-throughput screening: new technology for the 21st century. Curr. Opin. Chem. Biol. 4(4), 445-451 (2000)

    Article  Google Scholar 

  9. P. Abgrall, A.-M. Gu, Lab-on-chip technologies: making amicrofluidic network and coupling it into a complete microsystem-a review. J. Micromech. Microeng. 17(5), 15-49 (2007)

    Article  Google Scholar 

  10. D.J. Laser, J.G. Santiago, A review of micropumps. J. Micromech. Microeng. 14(6), 35-64 (2004)

    Article  Google Scholar 

  11. K.W Oh, C.H Ahn, A review of microvalves. J. Micromech. Microeng. 16(5), 13-39 (2006)

    Google Scholar 

  12. A.J. Tüds, G.A.J. Besselink, R.B.M. Schasfoort, Trends in miniaturized total analysis systems for point-of-care testing in clinical chemistry. Lab Chip 1(2), 83-95 (2001)

    Article  Google Scholar 

  13. B.L. Ziober, M.G. Mauk, E.M. Falls, Z. Chen, A.F. Ziober, H.H. Bau, Lab-on-a-chip for oral cancer screening and diagnosis. Head Neck 30(1), 111-121 (2008)

    Article  Google Scholar 

  14. W.P. Guo, X.M. Ma, Y. Zeng, Clinical laboratories on a chip for human immunodeficiency virus assay. 27th Annual International Conference of IEEE-EMBS, Shanghai, China, 17-18 Jan 2005

    Google Scholar 

  15. D. Yang, L. Song, Y. Liu, R. Zhao, L. Ma, Y. Shao, X. Jiang, A fast, high throughput, and low-cost microfluidic bioassays for detecting HIV. Proceedings of the 5th International Conference on Information Technology and Application in Biomedicine, Shenzhen, China, 30-31 May 2008

    Google Scholar 

  16. C.P. Price, Point of care testing. Br. Med. J. 322, 1285-1288 (2001)

    Article  Google Scholar 

  17. P.V. Lode, Point-of-care immunotesting: Approaching the analytical performance of central laboratory methods. Clin. Biochem. 38(7), 591-606 (2005)

    Article  Google Scholar 

  18. C.S. Bradshaw, A.N. Morton, S.M. Garland, L.B. Horvath, I. Kuzevska, C.K. Fairley, Evaluation of a point-of-care test, BVBlue, and clinical and laboratory criteria for diagnosis of bacterial vaginosis. J. Clin. Microbiol. 43(3), 1304-1308 (2005)

    Article  Google Scholar 

  19. K. Dickstein, A. Cohen-Solal, G. Filippatos et al., ESC guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur. J. Heart Fail. 10, 933-989 (2008)

    Article  Google Scholar 

  20. P.K.S. Lam, Use of biomarkers in environmental monitoring. Ocean Coastal Manage. 52(7), 348-354 (2009)

    Article  Google Scholar 

  21. P. Hansen, Advanced Environmental Monitoring, Chapter 23, Biosensors for Environmental Monitoring (Springer, Netherland, 2007)

    Google Scholar 

  22. M. Kampa, E. Castanas, Human health effects of air pollution. Environ. Pollut. 151(2), 362-367 (2008)

    Article  Google Scholar 

  23. J. Melin, S.R. Quake, Microfluidic large-scale integration: the evolution of design rules for biological automation. Ann. Rev. Biophy. Biomol. Struct. 36, 213-231 (2007)

    Article  Google Scholar 

  24. D. Sparks, R. Smith, M. Straayer, J. Cripe, R. Schneider, A. Chimbayo, S. Anasari, N. Najafi, Measurement of density and chemical concentration using a microfluidic chip. Lab Chip 3, 19-21 (2003)

    Article  Google Scholar 

  25. Section of Cancer Genomics. Protocol: DNA preparation from Blood http://www.riedlab.nci.nih.gov/publications/DNA%20Prep_Blood%20.pdf.

  26. C.H. Mastrangelo, M.A. Burns, D.T. Burke, Microfabricated devices for genetic diagnostics. Proc. IEEE 86(8), 1769-1787 (1998)

    Article  Google Scholar 

  27. J.W. Hong, S.R. Quake, Integrated nanoliter systems. Nat. Biotech. 21, 1179-1183 (2003)

    Google Scholar 

  28. P. Yager, T. Edwards, E. Fu, K. Helton, K. Nelson, M.R. Tam, B.H. Weigl, Microfluidic diagnostic technologies for global public health. Nature 442, 412-418 (2006)

    Article  Google Scholar 

  29. P. Mitchel, Microfluidics - downsizing large-scale biology. Nature 19, 217-221 (2001)

    Google Scholar 

  30. A.L. Paguirigan, D.J. Beebe, Microfluidics meet cell biology: bridging the gap by alidation and application of microscale techniques for cell biological assays. Bioassays 30, 811-821 (2008)

    Article  Google Scholar 

  31. P. Maoa, J. Han, Fabrication and characterization of 20 nm planar nanofluidic channels by glass-glass and glass-silicon bonding. Lab Chip 5, 837-844 (2005)

    Article  Google Scholar 

  32. B.R. Flachsbart, K. Wong, J.M. Iannacone, E.N. Abante, R.L. Vlach, P.A. Rauchfuss, P.W. Bohn, J.V. Sweedlerbc, M.A. Shannon, Design and fabrication of a multilayered polymer microfluidic chip with nanofluidic interconnects via adhesive contact printing. Lab Chip 6, 667-674 (2006)

    Article  Google Scholar 

  33. S.G. Im, K.W. Bong, C.H. Lee, P.S. Doyle, K.K. Gleason, A conformal nano-adhesive via initiated chemical vapour deposition for microfluidic devices. Lab Chip 9, 411-416 (2009)

    Article  Google Scholar 

  34. H. Becker, U. Heim, Hot embossing as a method for the fabrication of polymer high aspect ratio structures. Sens. Actuat. A: Phys. 83(1), 130-135 (2000)

    Article  Google Scholar 

  35. G. Kumar, H.X. Tang, J. Schroers, Nanomoulding with amorphous metals. Nature 457, 868-872 (2009)

    Google Scholar 

  36. Micronit Microfluidics Inc., http://www.micronit.com/

  37. D. Sung Yoon, Y. Lee, Y. Lee, H.J. Cho, S.W. Sung, K. WOh, J. Cha, G. Lim, Precise temperature control and rapid thermal cycling in a micromachined DNA polymerase chain reaction chip. J. Micromech. Microeng. 12, 813-823 (2002)

    Article  Google Scholar 

  38. J.A. Higgins, S. Nasarabadi, J.S. Karns, D.R. Shelton, M. Cooper, A. Gbakima, R.P. Koopman, A handheld real time thermal cycler for bacterial pathogen detection. Biosens. Bioelectron. 18, 1115-1123 (2003)

    Article  Google Scholar 

  39. Harvard Apparatus. http://www.harvardapparatus.com

  40. J.B. Christen, A.G. Andreou, Design, fabrication, and testing of a hybrid CMOS/PDMS microsystem for cell culture and incubation. IEEE Trans. Biomed. Circuits Syst. 1(1), 3-18 (2007)

    Article  Google Scholar 

  41. W.E. Wright, J.W. Shay, Inexpensive low-oxygen incubators. Nat. Protoc. 1, 2088-2090 (2006)

    Google Scholar 

  42. A.J. deMello, DNA amplification moves on. Nature 422, 19-20 (2003)

    Google Scholar 

  43. eppendrof Inc. http://www.eppendorfna.com

  44. Institute of Bioengineering and Nanotechnology. http://www.ibn.a-star.edu.sg/

  45. T.B. Jones, Basic theory of dielectrophoresis and electrorotation. IEEE Mag. Eng. Med. Biol. 22(6), 33-42 (2003)

    Article  Google Scholar 

  46. B.H. Lapizco-Encinas, M. Rito-Palomares, Dielectrophoresis for the manipulation of nanobioparticles. Electrophoresis 28, 4521-4538 (2007)

    Article  Google Scholar 

  47. J. Korlach, C. Reichle, T. Muller, T. Schnelle, W.W. Webb, Trapping, deformation, and rotation of giant unilamellar vesicles in octode dielectrophoretic field cages. Biophys. J. 89, 554-562 (2005)

    Article  Google Scholar 

  48. N. Flores-Rodringuez, G.h. Markx, Improved levitation and trapping of particles by negative dielectrophoresis by the addition of amphoteric molecules. J. Phys. D: Appl. Phys. 37, 353-361 (2004)

    Article  Google Scholar 

  49. Y. Kang, D. Li, S.A. Kalams, J.E. Eid, DC-dielectrophoretic separation of biological cells by size. Biomed. Microdevices 10, 243-249 (2008)

    Article  Google Scholar 

  50. Youlan Li, C. Dalton, H. John Crabtree, G. Nilsson, K.V.I.S. Kaler, Continuous dielectrophoretic cell separation microfluidic device. Lab Chip 7, 239-248 (2007)

    Article  Google Scholar 

  51. P.R.C. Gascoyne, J.V. Vykoukal, Dielectrophoresis-based sample handling in general-purpose programmable diagnostic instruments. Proc. IEEE 92(1), 22-42 (2004)

    Article  Google Scholar 

  52. V. Dolnik, DNA sequencing by capillary electrophoresis. J. Biochem. Biophy. Meth. 41, 103-119 (1999)

    Article  Google Scholar 

  53. T. Rabilloud, Two-dimensional gel electrophoresis in proteomics: old, fashioned, but it still climbs up the mountains. Proteomics 2, 3-10 (2002)

    Article  Google Scholar 

  54. Caliper Inc. http://www.caliperls.com/

  55. D. Proudnikov, A. Mirzabekov, Chemical methods of DNA and RNA fluorescent labelling. Nucleic Acids Res. 24(22), 4535-4542

    Google Scholar 

  56. G. Kurlyandskaya, V. Levit, Magnetic Dynabeads® detection by sensitive element based on giant magnetoimpedance. Biosens. Bioelectron. 20, 1611-1616 (2005)

    Article  Google Scholar 

  57. M. Khine, C. Ionescu-Zanetti, A. Blatz, L.P. Wang, L.P. Lee, Single-cell electroporation arrays with real-time monitoring and feedback control. Lab Chip 7, 457-462 (2007)

    Article  Google Scholar 

  58. D. Ham, H. Lee, R. Westervelt, CMOS Biotechnology (Springer, Berlin, 2008)

    Google Scholar 

  59. L. Pancheri, M. Scandiuzzo, D. Stoppa, G.F.D. Betta, Low-noise avalanche photodiode in standard 0.35-μm CMOS technology. IEEE Trans. Electron Devices 55(1), 457-461 (2008)

    Google Scholar 

  60. C. G. Jakobson, U. Dinnar, M. Feinsod, Y. Nemirovsky, Ion-sensitive field-effect transistors in standard CMOS fabricated by post processing. IEEE J. Sens. 2(4), 279-287 (2002)

    Article  Google Scholar 

  61. M.A.P. Pertijs, G.C.M. Meijer, J.H. Huijsing, Precision temperature measurement using CMOS substrate PNP transistors. IEEE J. Sens. 4(3), 294-300 (2004)

    Article  Google Scholar 

  62. G. Medoro, C. Nastruzzi, R. Guerrieri, R. Gambari, N. Manaresi, Lab on a chip for live-cell manipulation. Des. Test Comp. IEEE 24(1), 26-36 (2007)

    Article  Google Scholar 

  63. Hakho Lee, Yong Liu, R.M. Westervelt, D. Ham, IC/microfluidic hybrid system for magnetic manipulation of biological cells. IEEE J. Solid State Circuits 41(6), 1471-1480 (2006)

    Article  Google Scholar 

  64. A. Hassibi, T.H. Lee, A Programmable 0.18-μ CMOS electrochemical sensor microarray for biomolecular detection. IEEE J. Sens. 6(6), 1380-1388 (2006)

    Google Scholar 

  65. M.M. Ahmadi, G.A. Jullien, A wireless-implantable microsystem for continuous blood glucose. IEEE Trans. Monit. Biomed. Circuits Syst. 3(3), 169-180 (2009)

    Article  Google Scholar 

  66. E. Ghafar-Zadeh, M. Sawan, A hybrid microfluidic/CMOS capacitive sensor dedicated to lab-on-chip applications. IEEE Trans. Biomed. Circuits Syst. 1(4) (2007)

    Google Scholar 

  67. P.A. Hammond, D. Ali, D.R.S. Cumming, Design of a single-chip pH sensor using a conventional 0.6-μm CMOS process. IEEE Sens. J. 4(6), 706-712 (2004)

    Google Scholar 

  68. L. Yue, C. Vancura, K.U. Kirstein, J. Lichtenberg, A. Hierlemann, Monolithic resonant-cantilever-based CMOS microsystem for biochemical sensing. IEEE Trans. Circuits Syst. I 55(9), 2551-2560 (2008)

    Article  Google Scholar 

  69. H. Eltoukhy, K. Salama, A.E. Gamal, A 0.18-μm CMOS bioluminescence detection lab-on-chip. IEEE J. Solid State Circuits 41(3), 651-662 (2006)

    Google Scholar 

  70. A. Balasubramanian, B. Bhuva, R. Mernaugh, F.R. Haselton, Si-based sensor for virus detection. IEEE J. Sens. 5(3), 340-344 (2005)

    Article  Google Scholar 

  71. E. Ghafar-Zadeh, M. Sawan, V.P. Chodavarapu, Micro-organism-on-chip: emerging direct-write CMOS-based platform for biological applications. IEEE Trans. Biomed. Circuits Syst. 3, 212-219 (2009)

    Article  Google Scholar 

  72. C. Stagni, C. Guiducci, L. Benini, B. Ricco, S. Carrara, C. Paulus, M. Schienle, R. Thewes, A fully electronic label-free DNA sensor chip. IEEE J. Sens. 7(4) (2007)

    Google Scholar 

  73. C. Hagleitner, D. Lange, A. Hierlemann, O. Brand, H. Baltes, CMOS single-chip gas detection system comprising capacitive, calorimetric and mass-sensitive microsensors. IEEE J. Solid State Circuits, 37(12) (2002)

    Google Scholar 

  74. A. Romani, N. Manaresi, L. Marzocchi, G. Medoro, A. Leonardi, L. Altomare, M. Tartagni, R. Guerrieri, Capacitive sensor array for localization of bioparticles in CMOS lab-on-a-chip. Digest of Technical Papers, IEEE ISSCC Conference, 2004, pp. 224-225

    Google Scholar 

  75. S.B. Prakash, P. Abshire, On-chip capacitance sensing for cell monitoring applications. IEEE J. Sens. 7(3) (2007)

    Google Scholar 

  76. Y. Chao, Y. Huang, B.L. Hassler, R.M. Worden, A.J. Mason, Amperometric electrochemical microsystem for a miniaturized protein biosensor array. IEEE Trans. Biomed. Circuits Syst. 3(3), 160-168 (2009)

    Article  Google Scholar 

  77. N. Manaresi, A. Romani, G. Medoro, L. Altomare, A. Leonardi, M. Tartagni, R. Guerrieri. A CMOS chip for individual cell manipulation and detection. IEEE J. Solid State Circuits 38(12), 2297-2305 (2003)

    Article  Google Scholar 

  78. M. Jenkner, M. Tartagni, A. Hierlemann, R. Thewes, Cell-based CMOS sensor and actuator arrays. IEEE J. Solid State Circuits 39(12), 2431-2437 (2004)

    Article  Google Scholar 

  79. G. Medoro, P. Vulto, L. Altomare, M. Abonnenc, A. Romani, M. Tartagni, R. Guerrieri, N. Manaresi, Dielectrophoretic cage-speed separation of bio-particles. Proc. IEEE Sens. 1, 76-79 (2004)

    Article  Google Scholar 

  80. G. Medoro, N. Manaresi, M. Tartagni, R. Guerrieri, CMOS-only sensors and manipulators for microorganisms. Electron Devices Meeting, 2000. IEDM Technical Digest. International, 2000, pp. 415-418

    Google Scholar 

  81. M. Tartagni, L. Altomare, R. Guerrieri, A. Fuchs, N. Manaresi, G. Medoro, Microelectronic chips for molecular and cell biology. Sens. Update 13(1), 155-200 (2003)

    Article  Google Scholar 

  82. K.W. Current, K. Yuk, C. McConaghy, P.R.C. Gascoyne, J.A. Schwartz, J.V. Vykoukal, C. Andrews, A High-voltage SOI CMOS exciter chip for a programmable fluidic processor system. IEEE Trans. Biomed. Circuits Syst. 1(2), 105-115 (2007)

    Article  Google Scholar 

  83. H.A. Wake, M.A. Brooke, Low voltage electrophoresis on a CMOS chip. 50th Midwest Symposium on Circuits and Systems (MWSCAS 2007), Aug 2007

    Google Scholar 

  84. M. Khorasani, M. Behnam, L. van den Berg, C.J. Backhouse, D.G. Elliott, High-voltage CMOS controller for microfluidics. IEEE Trans. Biomed. Circuits Syst. 3(2), 89-96 (April 2009)

    Article  Google Scholar 

  85. P. Muir, F. Nicholson, M. Jhetam, S. Neogi, J.E. Banatvala, Rapid diagnosis of enterovirus infection by magnetic bead extraction and polymerase chain reaction detection of enterovirus RNA in clinical specimens. J. Clin. Microbiol. 31(1), 31-38 (1993)

    Google Scholar 

  86. T. Aytura, J. Foleyb, M. Anwara, B. Bosera, E. Harrisc, P.R. Beatty, A novel magnetic bead bioassay platform using a microchip-based sensor for infectious disease diagnosis. J. Immunol. Meth. 314(1), 21-29 (2006)

    Article  Google Scholar 

  87. H. Lee, Y. Liu, D. Ham, R. Westervelt, Integrated cell manipulation system - CMOS/microfluidic hybrid. Lab Chip 7, 331-337 (2007)

    Article  Google Scholar 

  88. H. Lee, E. Sun, D. Ham, R. Weissleder, Chip-NMR biosensor for detection and molecular analysis of cells. Nat. Med. 14 (2008)

    Google Scholar 

  89. D.E. Schwartz, E. Charbon, K.L. Shepard, A single-photon avalanche diode array for fluorescence lifetime imaging microscopy. IEEE J. Solid State Circuits 43(11), 2546-2557 (2008)

    Article  Google Scholar 

  90. Y. Maruyama, K. Sawada, H. Takao, M. Ishida, A novel filterless fluorescence detection sensor for DNA analysis. IEEE Trans. Electron Devices 53(3), 553-558 (2006)

    Article  Google Scholar 

  91. L. Hartley, K.V.I.S. Kaler, O. Yadid-Pecht, Hybrid integration of an active pixel sensor and microfluidics for cytometry on a chip. IEEE Trans. Circuits Syst. I: Regular Papers 54(1), 99-110 (2007)

    Article  Google Scholar 

  92. M.L. Simpson, G.S. Saylerc, G. Pattersonb, D.E. Nivensc, E.K. Boltonb, J.M. Rochelleb, J.C. Arnottb, B.M. Applegatec, S. Rippc, M.A. Guillornb, An integrated CMOS microluminometer for low-level luminescence sensing in the bioluminescent bioreporter integrated circuit. Sens. Actuator. B Chem. 72(2), 134-140 (2001)

    Article  Google Scholar 

  93. J.G. Bundy, J.L. Wardell, C.D. Campbell, K. Killham, G.I. Paton, Application of bioluminescence-based microbial biosensors to the ecotoxicity assessment of organotins. Lett. Appl. Microbiol. 25(5), 353-358

    Google Scholar 

  94. A. El Gamal, H. Eltoukhy, CMOS image sensors. IEEE Mag. Circuits Devices 21(3), 6-20 (2005)

    Article  Google Scholar 

  95. H. Tian, B. Fowler, A.E. Gamal, Analysis of temporal noise in CMOS photodiode active pixel sensor. IEEE J. Solid State Circuits 36(1), 92-101 (2001)

    Article  Google Scholar 

  96. K. Fife, A. El-Gamal, H.S.P. Wong, A multi-aperture image sensor with 0.7 μm pixels in 0.11 μm CMOS technology. IEEE J. Solid State Circuits 43(12), 2990-3005 (2008)

    Google Scholar 

  97. M. Choa, S. Chunga, S.D. Heoa, J. Kua, C. Ban, A simple fluorescent method for detecting mismatched DNAs using a MutS-fluorophore conjugate. Biosens. Bioelectron. 22(7), 1376-1381 (2007)

    Article  Google Scholar 

  98. A. Hierlemann, Integrated Chemical Microsensor Systems in CMOS Technology (Springer, New York, 2005)

    Google Scholar 

  99. B. Jang, A. Hassibi, Biosensor systems in standard CMOS processes: fact or fiction? IEEE Trans. Ind. Electron. 56(4), 979-985 (2009)

    Article  Google Scholar 

  100. E. Anderson, J. Daniels, H. Yu, T. Lee, N. Pourmand, A label-free CMOS DNA microarray based on charge sensing. IEEE Conference on Instrumentation and Measurement Technology (IMTC), Victoria, BC, May 2008

    Google Scholar 

  101. P.M. Levine, G. Ping, R. Levicky, K.L. Shepard, Active CMOS sensor array for electrochemical biomolecular detection. IEEE J. Solid State Circuits 43(8), 1859-1871 (2008)

    Article  Google Scholar 

  102. L. Bandieraa, G. Cellerea, S. Cagninb, A. De Tonia, E. Zanonia, G. Lanfranchib, L. Lorenzelli, A fully electronic sensor for the measurement of cDNA hybridization kinetics. Biosens. Bioelectron. 22(9), 2108-2114 (2007)

    Article  Google Scholar 

  103. Z. Emmanuel Selvanayagam, P. Neuzil, P. Gopalakrishnakonea, U. Sridharb, M. Singh, L.C. Ho. An ISFET-based immunosensor for the detection of β-Bungarotoxin. Biosens. Bioelectron. 17(9), 821-826 (2002)

    Article  Google Scholar 

  104. P.A. Hammond, D. Ali, D.R.S. Cumming, A system-on-chip digital pH meter for use in a wireless diagnostic capsule. IEEE Trans. Biomed. Eng. 52(4), 687-694 (2005)

    Article  Google Scholar 

  105. R.A. Yotter, L.A. Lee, D.M. Wilson, Sensor technologies for monitoring metabolic activity in single cells-part I: optical methods, IEEE Sens. J. 4(4), 395-411 (2004)

    Article  Google Scholar 

  106. R.A. Yotter, D.M. Wilson, Sensor technologies for monitoring metabolic activity in single cells-part II: nonoptical methods and applications. IEEE Sens. J. 4(4), 412-429 (2004)

    Article  Google Scholar 

  107. E. Lauwers, J. Suls, W. Gumbrecht, D. Maes, G. Gielen, W. Sansen, A CMOS multiparameter biochemical microsensor with temperature control and signal interfacing. IEEE J. Solid State Circuits 36(12), 2030-2038 (2001)

    Article  Google Scholar 

  108. P.A. Hammond, D.R.S. Cumming, D. Ali, A single-chip pH sensor fabricated by a conventional CMOS process. IEEE Proc. Sens. (2002)

    Google Scholar 

  109. P.K. Chan, D.Y. Chen, A CMOS ISFET interface circuit with dynamic current temperature compensation technique, Trans. Circuits Syst. I: Regular Papers IEEE, 54(1), 119-129 (2007)

    Article  Google Scholar 

  110. A. Hierlemann, H. Baltes, CMOS-based chemical microsensors. Analyst 128, 15-28 (2003)

    Google Scholar 

  111. R.P. Ried, K.E. Sok, D.M. Hong, R.S. Muller, Piezoelectric microphone with on-chip CMOS circuits. IEEE J. Microelectromech. Syst. 2(3), 111-120 (199)

    Google Scholar 

  112. G. Sauerbrey, Verwendung von Schwingquarzen zur Wägung dünner Schichten und zur Mikrowägung. Zeitschrift für Physik A Hadrons and Nuclei 155(2) (1959)

    Google Scholar 

  113. Q-Sense Inc. http://www.q-sense.com/

  114. C. Hagleitner, A. Hierlemann, O. Brand, H. Baltes, Sensor technology CMOS single chip gas detection systems: Part I. Sens. Update 11(1), 101-155

    Google Scholar 

  115. SS.S. Leea, R.M. White, Self-excited piezoelectric cantilever oscillators. Sens. Actuator. A: Phys. 52(1-3), 41-45 (1996)

    Google Scholar 

  116. C. Chun-Hao, H. Rong-Zhang, H. Long-Sun, L. Shi-Ming, C. Hsiao-Chin, Y. Yu-Che, L. Yu-Tso, Y. Shih-An, L. Yo-Sheng, W. Yiao-Hong, C. Nai-Kuan, L. Shey-Shi, A wireless bio-MEMS sensor for c-reactive protein detection based on nanomechanics. IEEE Trans. Biomed. Eng. 56(2), 462-470 (2009)

    Article  Google Scholar 

  117. K.-U. Kirstein, Y. Li, M. Zimmermann, C. Vancura, T. Volden, W.H. Song, A. Hierlemannn, J. Lichtenberg, Cantilever-based biosensors in CMOS technology Design. Automation Test Eur. 2, 1340-1341 (2005)

    Article  Google Scholar 

  118. Y. Xiaomei, T. Yaquan, Z. Haitao, T. Li, W. Wei, Design of high-sensitivity cantilever and its monolithic integration with CMOS circuits. IEEE J. Sens. 7(4), 489-495 (2007)

    Article  Google Scholar 

  119. I. Voiculescu, M.E. Zaghloul, R.A. McGill, E.J. Houser, G.K. Fedder, Electrostatically actuated resonant microcantilever beam in CMOS technology for the detection of chemical weapons. IEEE J. Sens. 5(4), 641-647 (2005)

    Article  Google Scholar 

  120. C. Hagleitner, A. Hierlemann, D. Lange, A. Kummer, N. Kerness, O. Brand, H. Baltes, Smart single-chip gas sensor microsystem. Nature 414, 293-296 (2001)

    Google Scholar 

  121. S. Baglio, S. Castorina, N. Savalli, Integrated inductive sensors for the detection of magnetic microparticles. IEEE J. Sens. 5(3), 372-384 (2005)

    Article  Google Scholar 

  122. Z.B. Randjelovic, M. Kayal, R. Popovic, H. Blanchard, Highly sensitive Hall magnetic sensor microsystem in CMOS technology. IEEE J. Solid State Circuits 37(2), 151-159 (2002)

    Article  Google Scholar 

  123. R. Boll, K.J. Overshott, Magnetic sensors, vol. 5. Sensors: A Comprehensive Survey (VCH, Weinbeim, 1989)

    Google Scholar 

  124. T. Aytura, J. Foleyb, M. Anwara, B. Bosera, E. Harrisc, P.R. Beatty, A novel magnetic bead bioassay platform using a microchip-based sensor for infectious disease diagnosis. J. Immunol. Meth. 314(1-2), 21-29 (31 July 2006)

    Article  Google Scholar 

  125. Aytur, CMOS biosensor for infectious disease detection. Thesis, Electrical Engineering and Computer Sciences University of California, Berkeley, CA, Aug 2007

    Google Scholar 

  126. M.A.P. Pertijs, A. Niederkorn, Ma Xu, B. McKillop, A. Bakker, J.H. Huijsing, A CMOS smart temperature sensor with a 3σ inaccuracy of ±0.5°C from −50°C to 120°C. IEEE J. Solid State Circuits 40(2), 454-461 (2005)

    Google Scholar 

  127. M.A.P. Pertijs, K.A.A. Makinwa, J.H. Huijsing, A CMOS smart temperature sensor with a 3σ inaccuracy of ±0.1°C from −55°C to 125°C. IEEE J. Solid State Circuits 40(12), 2805-2815 (2005)

    Google Scholar 

  128. N. Kerness, A. Koll, A. Schaufelbuhl, C. Hagleitner, A. Hierlemann, O. Brand, H. Baltes, N-well based CMOS calorimetric chemical sensors. Thirteenth Annual International Conference on Micro Electro Mechanical Systems (MEMS), Miyazaki, Japan, Jan 2000

    Google Scholar 

  129. H. Baltes, O. Paul, O. Brand, Micromachined thermally based CMOS microsensors. Proc. IEEE 86(8), 1660-1678 (1998)

    Article  Google Scholar 

  130. U. Frey, M. Graf, S. Taschini, K.-U. Kirstein, A. Hierlemann, A digital CMOS architecture for a micro-hotplate array. IEEE J. Solid State Circuits 42(2), 441-450 (2007)

    Article  Google Scholar 

  131. M. Graf, D. Barrettino, M. Zimmermann, A. Hierlemann, H. Baltes, S. Hahn, N. Barsan, U. Weimar, CMOS monolithic metal-oxide sensor system comprising a microhotplate and associated circuitry. IEEE J. Sens. 4(1), 9-16 (2004)

    Article  Google Scholar 

  132. B. Derek De Busschere, G.T.A. Kovacs, Portable cell-based biosensor system using integrated CMOS cell-cartridges. Biosens. Bioelectron. 16(7-8), 543-556 (2001)

    Article  Google Scholar 

  133. J.B. Christen, A.G. Andreou, Hybrid silicon/silicone (polydimethylsiloxane) microsystem for cell culture. IEEE International Symposium on Circuits and Systems (ISCAS), Island of Kos, 2006

    Google Scholar 

  134. Y. Chingwen, K. Najafi, CMOS interface circuitry for a low-voltage micromachined tunneling accelerometer. J. Microelectromech. Syst. 7(1), 6-15 (1998)

    Article  Google Scholar 

  135. B.V. Amini, F. Ayazi, A 2.5-V 14-bit ΣΔ CMOS SOI capacitive accelerometer. IEEE J. Solid State Circuits 39(12), 2467-2476 (2004)

    Google Scholar 

  136. W.F. Lee, P.K. Chan, A capacitive-based accelerometer IC using injection-nulling switch technique. IEEE Trans. Circuits Syst. I: Regular Papers, 55(4), 980-989 (2008)

    Article  MathSciNet  Google Scholar 

  137. B.V. Amini, R. Abdolvand, F. Ayazi, A 4.5-mW closed-loop deltasigma micro-gravity CMOS SOI accelerometer. IEEE J. Solid State Circuits 41(12), 2983-2991 (2006)

    Google Scholar 

  138. L. Benini, C. Guiducci, C. Paulus, Electronic detection of DNA hybridization: toward CMOS microarrays. IEEE Des. Test Comp. 24(1), 38-48 (2007)

    Article  Google Scholar 

  139. A.M. Kummer, A. Hierlemann, Configurable electrodes for capacitive-type sensors and chemical sensors. IEEE J. Sens. 6(1), 3-10 (2006)

    Article  Google Scholar 

  140. E. Ghafar-Zadeh, M. Sawan, D. Therriault, CMOS-based capacitive sensor lab-on-chip: a multidisciplinary approach. Analog Integr. Circuits Signal Process. 59(1) (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ebrahim Ghafar-Zadeh .

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Ghafar-Zadeh, E., Sawan, M. (2010). Introduction. In: CMOS Capacitive Sensors for Lab-on-Chip Applications. Analog Circuits and Signal Processing. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3727-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-90-481-3727-5_1

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-3726-8

  • Online ISBN: 978-90-481-3727-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics