Skip to main content

Chromosomal Abnormalities in Selected Hematopoietic Malignancies Detected by Conventional and Molecular Cytogenetics: Diagnostic and Prognostic Significance

  • Chapter
  • First Online:
  • 887 Accesses

Part of the book series: Cancer Growth and Progression ((CAGP,volume 12))

Abstract

Theodor Boveri first proposed the somatic mutation theory of cancer in 1914. He proposed that cancer develops from a single cell that acquires a genetic alteration. The hypothesis of the clonal origin of neoplasms, however, could neither be confirmed nor be refuted because the tools for testing his hypothesis were not yet available at the time. With advances in the techniques for obtaining analyzable metaphases over the ensuing years, supporting evidence accumulated. In 1960, Nowell and Hungerford reported the first recurrent chromosomal abnormality associated with a single cancer type, chronic myelocytic (or myeloid) leukemia, or CML [1]. The marker chromosome was named the Philadelphia (Ph) chromosome in honor of the city where it was discovered.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Nowell PC, Hungerford DA. A minute chromosome in human chronic myelocytic leukemia (CML). Science 132: 1497, 1960

    Google Scholar 

  2. Rowley JD. A new consistent chromosomal abnormality in chronic myelogenous leukemia identified by quinacrine fluorescence and Giemsa staining. Nature 234: 290–293, 1973

    Article  Google Scholar 

  3. Tjio JH, Whang-Peng J. Chromosomal preparation of bone marrow cells without prior in vitro culture or in vivo colchicine administration. Stain Technol 37: 17, 1962

    PubMed  CAS  Google Scholar 

  4. Mark HFL: Bone marrow cytogenetics and hematologic malignancies. In the Cytogenetic Symposia, Kaplan BJ, Dale KS, Eds. Association of Cytogenetic Technologists, Burbank, CA, 1994a

    Google Scholar 

  5. Mark HFL: Cytogenetic aberrations in hematologic malignancies. In the Cytogenetic Symposia, Second Edition. Dunn B, Mouchrani P and Keagle M, Eds. Association of Genetic Technologists, Burbank, CA, 2005

    Google Scholar 

  6. Moorhead PS, Nowell PC, Mellman WJ, et al. Chromosome preparations of leukocytes cultured from human peripheral blood. Exp Cell Res 20: 613–616, 1960

    Article  PubMed  CAS  Google Scholar 

  7. Rainbow Scientific, Inc., http://www.rainbowscientific.com

  8. Tecan-US online product information: http://www.tecan-us.com

  9. Thermotron online product information: http://www.thermotron.com

  10. Caspersson T, Zech L, Johansson C, Modest EJ. Identification of human chromosomes by DNA-binding fluorescent agents. Chromosoma 30: 215–227, 1970

    Article  PubMed  CAS  Google Scholar 

  11. Blancato JK, Haddad BR: Fluorescent in situ hybridization (FISH): Principles and methodology. In Medical Cytogenetics, Mark HFL, Ed. Marcel Dekker, Inc., New York, 141–164, 2000

    Google Scholar 

  12. Chang S, Mark HFL. Emerging molecular cytogenetic technologies. Cytobios 90: 7–22, 1997

    PubMed  CAS  Google Scholar 

  13. Mark HFL, Chow B. Localization of the gene encoding the secretin receptor on human chromosone 2q by fluorescent in situ hybridization and chromosome morphometry. Genomics 29: 817–818, 1995

    Article  PubMed  CAS  Google Scholar 

  14. Mark HFL, Gray Y, Khorsand J, Mark Y, Sikov W. A multimodal approach in diagnosing patients with hematopoietic disorders. Cancer Genet Cytogenet 109: 14–20, 1999a

    Article  PubMed  CAS  Google Scholar 

  15. Mark HFL, Gray Y, Sotomayor E, Joseph P: Trisomy 9 in secondary AML detected by fluorescent in situ hybridization (FISH). Pathobiology 67: 111–114, 1999b

    Article  PubMed  CAS  Google Scholar 

  16. Mark HFL, Jenkins R, Miller W. Current applications of molecular cytogenetic technologies. Ann Clin Lab Sci 27: 47–56, 1996

    Google Scholar 

  17. Mark HFL, Mark Y, Sotomayor E, Sambandam S. A patient with myelodysplastic syndrome studied by GTG-banding and fluorescent in situ hybridization. Cytobios 94: 121–128, 1998a

    PubMed  CAS  Google Scholar 

  18. Mark HFL, Pryzgoda J, Sikov W. Fluorescent in situ hybridization for identifying cytogenetic abnormalities in inadequate and suboptimal specimens. Pathobiology 66: 216–220, 1998b

    Article  PubMed  CAS  Google Scholar 

  19. Mark HFL, Rehan J, Mark S, Santoro K, Zolnierz K: FISH analysis of single-cell trisomies for determination of clonality. Cancer Genet Cytogenet 102: 1–5, 1998c

    Article  PubMed  CAS  Google Scholar 

  20. Mark HFL, Sikov W, Safran H, King TC, Griffith RC: Fluorescent in situ hybridization for assessing the proportion of cells with trisomy 4 in a patient with acute non-lymphoblastic leukemia. Ann Clin Lab Sci 25: 330–335, 1995

    PubMed  CAS  Google Scholar 

  21. Mark HFL, Sokolic RA, Mark Y: Acute Myeloid Leukemia (AML)—Cytogenetic detection of selected recurrent chromosomal abnormalities. Encyclopedia of Diagnostic Genomics and Proteomics. Marcel Dekker, Inc., New York, 17–24, 2005

    Google Scholar 

  22. Mark HFL: FISH analysis of biomarkers in cancer. Exp Mol Pathol 67: 131–134, 1999

    Article  PubMed  CAS  Google Scholar 

  23. Mark HFL: FISH as an adjunct to conventional cytogenetics: Analysis of metaphase and interphase cells. In Advances in Structural Biology, Malhotra S, Ed. Stamford, CT, Jai Press, Inc., 6: 1–39, 2000a

    Google Scholar 

  24. Mark HFL: Fluorescent in situ hybridization (FISH): Applications for clinical cytogenetics laboratories. In Medical Cytogenetics, Mark HFL, Ed. Marcel Dekker, Inc., New York, 553–578, 2000b

    Google Scholar 

  25. Mark HFL: Fluorescent in situ hybridization as an adjunct to conventional cytogenetics. Ann Clin Lab Sci 24: 153–163, 1994b

    PubMed  CAS  Google Scholar 

  26. Mark HFL. Medical Cytogenetics. Marcel Dekker, Inc., New York, 2000c

    Google Scholar 

  27. Miranda RN, Mark HFL, Medeiros LJ. Fluorescent in situ hybridization in routinely processed bone marrow aspirate clot and core biopsy sections. Am J Path 145: 1–6, 1994

    Google Scholar 

  28. Sokolic R, Ferguson W, Mark HFL. Discordant detection of monosomy 7 by GTG-banding and FISH in a patient with Shwachman-Diamond syndrome. Cancer Genet Cytogenet 115: 106–113, 1999

    Article  PubMed  CAS  Google Scholar 

  29. Young C, DiBenedetto J, Glasser L, Mark HFL. A Philadelphia chromosome positive CML patient with a unique translocation studied via GTG-banding and fluorescent in situ hybridization. Cancer Genet Cytogenet 89:157–162, 1996

    Article  PubMed  CAS  Google Scholar 

  30. Vysis Inc. online product information: http://www.vysis.com

  31. Mitelman F. An International System for Human Cytogenetic Nomenclature (1995). S. Karger, Basel, 1995

    Google Scholar 

  32. Shaffer LG, Tommerup N. An International System for Human Cytogenetic Nomenclature (2005). S. Karger, Basel, 2005

    Google Scholar 

  33. Fourth International Workshop on Chromosomes in Leukemia. Cancer Genet Cytogenet 11: 249–360, 1984

    Article  Google Scholar 

  34. Kaneko Y, Sakuri M: 15/17 translocation in acute promyelocytic leukemia. Lancet i: 961, 1977

    Google Scholar 

  35. Okada M, Miyazaki T, Kumota K: 15/17 translocation in acute promyelocytic leukemia. Lancet i: 961, 1977

    Article  Google Scholar 

  36. Bennett JM, Catovsky D, Daniel MT, et al. Criteria for the diagnosis of acute leukemia of megakaryocytic lineage (M7). Ann Intern Med 103: 460–462, 1985a

    PubMed  CAS  Google Scholar 

  37. Bennett JM, Catovsky D, Daniel MT, et al. Proposed revised criteria for the classification of acute myeloid leukemia: A report of the French-American-British Cooperative Group. Ann Intern Med 103: 626–629, 1985b

    Google Scholar 

  38. Heim S, Mitelman F: Cancer Cytogenetics, Second Edition. Wiley-Liss, New York, 1995

    Google Scholar 

  39. Harris NL, Jaffe ES, Diebold J, et al. The World Health Organization classification of neoplastic diseases of the hematopoietic and lymphoid tissues: Report of the Clinical Advisory Committee Meeting, Airlie House, Virginia, November 1997. Ann Oncol 10: 1419–1432, 1999a

    Google Scholar 

  40. Harris NH, Jaffe ES, Stein H, et al. A revised European-American classification of lymphoid neoplasms: A proposal from the International Lymphoma Study Group. Blood 84: 1361–1392, 1994

    PubMed  CAS  Google Scholar 

  41. Harris NL, Jaffe ES, Diebold J, et al. World Health Organization classification of neoplastic diseases of the hematopoietic and lymphoid tissues: Report of the Clinical Advisory Committee Meeting, Airlie House, Virginia, November 1997. J Clin Oncol 17: 3835–3849, 1999b

    Google Scholar 

  42. Jaffe ES, Harris NL, Stein H, Vardiman JW. World Health Organization Classification of Tumours: Pathology and Genetics of Tumors of Haematopoietic and Lymphoid tissues. IARC Press, Lyon, 2001

    Google Scholar 

  43. Byrd JC, Dodge RK, Carroll A, et al: Patients with t(8;21)(q22;q22) and acute myeloid leukemia have superior failure-free and overall survival when repetitive cycles of high-dose cytarabine are administered. J Clin Oncol 17: 3767–3775, 1999

    PubMed  CAS  Google Scholar 

  44. Ferrant A, Labopin M, Frassoni F, et al. On behalf of the Acute Leukemia Working Party of the European Group for Blood and Marrow Transplantation (EBMT): Karyotype in acute myeloblastic leukemia: Prognostic significance for bone marrow transplantation in first remission: An European Group for Blood and Marrow Transplantation study. Blood 90: 2391–2938, 1997

    Google Scholar 

  45. Hiddemann W, Kern W, Schoch C, et al. Management of acute myeloid leukemia in elderly patients. J Clin Oncol 17: 3569–3576, 1999

    PubMed  CAS  Google Scholar 

  46. Leith CP, Kopecky KJ, Godwin J, et al. Acute myeloid leukemia in the elderly: Assessment of multidrug resistance (MDR1) and cytogenetics distinguishes biologic subgroups with remarkably distinct responses to standard chemotherapy: A Southwest Oncology Group study. Blood 89: 3323–3329, 1997

    PubMed  CAS  Google Scholar 

  47. Mrózek K, Heinonen K, Lawrence D, et al. Adult patients with de novo acute myelogenous leukemia and t(9;11)(p22;q23) have a superior outcome to patients with other translocations involving band 11q23: A Cancer and Leukemia Group B study. Blood 90: 4532–4538, 1997

    PubMed  Google Scholar 

  48. List AF, Kopecky KJ, Willman CL, et al. Benefit of cyclosporine modulation of drug resistance in patients with poor-risk acute myeloid leukemia: A Southwest Oncology Study Group study. Blood 98: 3212–3220, 2001

    Article  PubMed  CAS  Google Scholar 

  49. Huntly BJP, Bench A, Green AR. Double jeopardy from a single translocation: Deletions of the derivative chromosome 9 in chronic myeloid leukemia. Blood 102: 1160–1168, 2003

    Article  PubMed  CAS  Google Scholar 

  50. Arico M, Valsecchi MG, Camitta B, et al. Outcome of treatment in children with Philadelphia chromosome-positive acute lymphoblastic leukemia. N Engl J Med 342: 998–1006, 2000

    Article  PubMed  CAS  Google Scholar 

  51. Heerema NA, Harbott J, Galimberti S, et al. Secondary cytogenetic aberrations in childhood Philadelphia chromosome positive acute lymphoblastic leukemia are nonrandom and may be associated with outcome. Leukemia 18: 693–702, 2004

    Article  PubMed  CAS  Google Scholar 

  52. Allan NC, Shepherd PCS, Richards SM. UK Medical Research Council randomised, multicentre trial of interferon-αn1 for chronic myeloid leukaemia: Improved survival irrespective of cytogenetic response. The Lancet 345(8962): 1392–1397, 1995

    Article  CAS  Google Scholar 

  53. Sawyers CL. Chronic myeloid leukemia. N Engl J Med 340: 1330–1340, 1999

    Article  PubMed  CAS  Google Scholar 

  54. Lee SJ, Kuntz KM, Horowitz MM, et al. Unrelated donor bone marrow transplantation for chronic myelogenous leukemia: A decision analysis. Ann Intern Med 127: 1080–1088, 1997

    PubMed  CAS  Google Scholar 

  55. van Rhee F Szydlo RM, Hermans J, et al. Long-term results after allogeneic bone marrow transplantation for chronic myelogenous leukemia in chronic phase: A report from the Chronic Leukemia Working Party of the European Group for Blood and Marrow Transplantation. Bone Marrow Transplant 20: 553–560, 1997

    Google Scholar 

  56. Gilleece MH, Dazzi F. Donor lymphocyte infusions for patients who relapse after allogeneic stem cell transplantation for chronic myeloid leukaemia. Leuk Lymphoma. 44: 23–28, 2003

    Article  PubMed  Google Scholar 

  57. Hughes TP, Kaeda J, Branford S, et al. Frequency of Major Molecular Responses to imatinib or interferon alfa plus cytarabine in newly diagnosed chronic myeloid leukemia. N Engl J Med 349: 1423–1432, 2003

    Article  PubMed  CAS  Google Scholar 

  58. Kantarjian H, Giles F, Wunderle L. Nilotinib in Imatinib-Resistant CML and Philadelphia Chromosome–Positive ALL. N Engl J Med 354: 2542–2551, 2006

    Article  PubMed  Google Scholar 

  59. Talpaz M, Shah NP, Kantarjian H, et al. Dasatinib in imatinib-resistant philadelphia chromosome–positive leukemias. N Engl J Med 354: 2531–2541, 2006

    Article  PubMed  CAS  Google Scholar 

  60. Perz, JP, Khorashad JS, Marin D, et al. Imatinib preceding allogeneic stem cell transplantation in chronic myeloid leukemia. Haematologica 91: 1145–1146, 2006

    PubMed  Google Scholar 

  61. Hochhaus A, Hughes T. Clinical resistance to imatinib: mechanisms and implications. Hematol/Oncol Clin North Am 18: 641–656, 2004.

    Article  Google Scholar 

  62. Marktel S, Marin D, Foot N, et al. Chronic Myeloid Leukemia in chronic phase responding to imatinib: The occurrence of additional cytogenetic abnormalities predicts disease progression. Haematologica 8: 206–267, 2003.

    Google Scholar 

  63. Cortes JE. Talpaz M, Giles F, et al. Prognostic significance of cytogenetic clonal evolution in patients with chronic myelogenous leukemia on imatinib mesylate therapy. Blood 101: 3794–3800, 2003

    Article  PubMed  CAS  Google Scholar 

  64. Fegan CD, Davis FE. Karyotypic and molecular abnormalities in chronic lymphocytic leukemia. Clin Mol Pathol 49: M185–M191, 1996

    Article  PubMed  CAS  Google Scholar 

  65. Anastasi J, Le Beau MM, Vardiman JW, et al. Detection of trisomy 12 in chronic lymphocytic leukemia by fluorescence in situ hybridization to interphase cells: A simple and sensitive method. Blood 79: 1796–1801, 1992

    PubMed  CAS  Google Scholar 

  66. Döhner H, Stilgenbauer S, Benner A, et al. Genomic Aberrations and Survival in Chronic Lymphocytic Leukemia. N Engl J Med 343:1910–1916, 2000

    Article  PubMed  Google Scholar 

  67. Döhner H, Fischer K, Bentz M, et al. p53 gene deletion predicts for poor survival and non-response to therapy with purine analogs in chronic B-cell leukemias. Blood 85: 1580–1589, 1995

    PubMed  Google Scholar 

  68. Byrd JC, Gribben JG, Peterson BL, Grever MR, Lozanski G, Lucas DM, Lampson B, Larson RA, Caligiuri MA, Heerema NA. Select high-risk genetic features predict earlier progression following chemoimmunotherapy with fludarabine and rituximab in chronic lymphocytic leukemia: Justification for risk-adapted therapy. Journal of Clinical Oncology 24(3):437–443, 2006.

    Article  PubMed  CAS  Google Scholar 

  69. Raimondi S: Cytogenetics of lymphoid neoplasias. In Medical Cytogenetics, Mark, HFL, Ed. Marcel Dekker, Inc., New York, 2000

    Google Scholar 

  70. Blum KA, Lozanski G, Byrd JC. Adult Burkitt leukemia and lymphoma. Blood: 104:3009–3020, 2004.

    Article  PubMed  CAS  Google Scholar 

  71. Magrath I, Adde M, Shad A, et al. Adults and children with small non-cleaved-cell lymphoma have a similar excellent outcome when treated with the same chemotherapy regimen. J Clin Oncol 14: 925–934, 1996.

    PubMed  CAS  Google Scholar 

  72. Grimwade D, Walker H, Oliver F, et al. The importance of diagnostic cytogenetics on outcome in AML: Analysis of 1,612 patients entered into the MRC AML 10 trial. Blood 92: 2322–2333, 1998

    PubMed  CAS  Google Scholar 

  73. Bloomfield CD, Lawrence D, Byrd JC, et al. Frequency of prolonged remission duration after high-dose cytarabine intensification in acute myeloid leukemia varies by cytogenetic subtype. Cancer Res 58: 4173–4179, 1998

    PubMed  CAS  Google Scholar 

  74. O’Donnell MR, Appelbaum FR, Baer MR, et al. NCCN Clinical Practice Guidelines in Oncology Acute Myeloid LeukemiaV.1.2006. Accessed online at http://www.nccn.org on 12-3-06.

  75. Estey E, Garcia-Manero G, Ferrajoli A. Use of all-trans retinoic acid plus arsenic trioxide as an alternative to chemotherapy in untreated acute promyelocytic leukemia. Blood 107: 3469–3473, 2006

    Article  PubMed  CAS  Google Scholar 

  76. Degos L Dombret H, Chomienne C, et al. All-trans-retinoic acid as a differentiating agent in the treatment of acute promyelocytic leukemia. Blood 85: 2643–2653, 1995

    Google Scholar 

  77. Douer D, Tallman M. Arsenic trioxide: New clinical experience with an old medication in hematologic malignancies. J Clin Oncol 23: 2396–2410, 2005

    Article  PubMed  CAS  Google Scholar 

  78. Licht JD, Chomienne C, Goy A, et al. Clinical and molecular characterization of a rare syndrome of acute promyelocytic leukemia associated with translocation (11; 17). Blood 85: 1083–1094, 1995

    PubMed  CAS  Google Scholar 

  79. Golub TR, Barker GF, Bohlander SK, et al. Fusion of the TEL gene on 12p13 to the AML gene on 21q22 in acute lymphoblastic leukemia. Proc Natl Acad Sci USA 92: 4917–4921, 1995

    Article  PubMed  CAS  Google Scholar 

  80. Romana SP, Mauchauffe M, Le Coniat M, et al. The t(12;21) of acute lymphoblastic leukemia results in a TEL-AML gene fusion. Blood 85: 3662–3670, 1995

    PubMed  CAS  Google Scholar 

  81. Shurtleff SA, Buijs A, Behm FG, et al. TEL/AML1 fusion resulting from a cryptic t(12;21) is the most common genetic lesion in pediatric ALL and defines a subgroup of patients with an excellent prognosis. Leukemia 9: 1985–1989, 1995

    PubMed  CAS  Google Scholar 

  82. Harbott J, Viehmann S, Borkhardt A, Henze G, Lampert F. Incidence of TEL-AML1 fusion gene analyzed consecutively in children with acute lymphoblastic leukemia in relapse. Blood 90: 4933–4937, 1997

    PubMed  CAS  Google Scholar 

  83. Loh ML, Goldwasser MA, Silverman LB, et al. Prospective analysis of TEL/AML1-positive patients treated on Dana-Farber Cancer Institute Consortium Protocol 95-01. Blood 107: 4508–4513, 2006

    Article  PubMed  CAS  Google Scholar 

  84. Wiemels JL, Ford AM, Van Wering ER, Postma A, Greaves M. Protracted and variable latency of acute lymphoblastic leukemia after TEL-AML1 gene fusion in utero. Blood 94: 1057–1062, 1999

    PubMed  CAS  Google Scholar 

  85. Bohlander SK. ETV6: A versatile player in leukemogenesis. Semin Cancer Biol 15: 162–174, 2005

    Article  PubMed  CAS  Google Scholar 

  86. Harewood L, Robinson H, Harris R, et al. Amplification of AML1 on a duplicated chromosome 21 in acute lymphoblastic leukemia: A study of 20 cases. Leukemia 17: 547–553, 2003

    Article  PubMed  CAS  Google Scholar 

  87. Soulier J, Trakhtenbrot L, Najfeld V, et al. Amplification of band q22 of chromosome 21, including AML1, in older children with acute lymphoblastic leukemia: An emerging molecular cytogenetic subgroup. Leukemia 17: 1679–1682, 2003

    Article  PubMed  CAS  Google Scholar 

  88. Robinson HM, Broadfield ZJ, Cheung KL, et al. Amplification of AML1 in acute lymphoblastic leukemia is associated with a poor outcome. Leukemia 17: 2249–2250, 2003

    Article  PubMed  CAS  Google Scholar 

  89. Strefford JC, van Delft FW, Robinson HM, et al. Complex genomic alterations and gene expression in acute lymphoblastic leukemia with intrachromosomal amplification of chromosome 21. Proc Natl Acad Sci U S A 103: 8167–8172, 2006

    Article  PubMed  CAS  Google Scholar 

  90. Behm FG, Raimondi SC, Frestedt JL, et al. Rearrangement of the MLL gene confers a poor prognosis in childhood acute lymphoblastic leukemia, regardless of presenting age. Blood 87: 2870–2877, 1996

    PubMed  CAS  Google Scholar 

  91. Chen C-S, Sorensen PHB, Domer PH, et al. Molecular rearrangements on chromosome 11q23 predominate in infant acute lymphoblastic leukemia and are associated with specific biological variables and poor outcome. Blood 81: 2386–2393, 1993

    PubMed  CAS  Google Scholar 

  92. Raimondi SC, Frestedt JL, Pui CH, et al. Acute lymphoblastic leukemias with deletion of 11q23 or a novel inversion (11)(p13q23) lack MLL gene rearrangements and have favorable clinical features. Blood 86: 1881–1886, 1995

    PubMed  CAS  Google Scholar 

  93. Pui CH, Gaynon PS, Boyett JM, et al. Outcome of treatment in childhood acute lymphoblastic leukaemia with rearrangements of the 11q23 chromosomal region. Lancet 359: 1909–1915, 2002

    Article  PubMed  Google Scholar 

  94. Hilden JM, Dinndorf PA, Meerbaum SO, et al. Analysis of prognostic factors of acute lymphoblastic leukemia in infants: Report on CCG 1953 from the Children’s Oncology Group. Blood 108: 441–451, 2006

    Google Scholar 

  95. Mathew S, Behm F, Dalton J, Raimondi S. Comparison of cytogenetics, Southern blotting, and fluorescence in situ hybridization as methods for detecting MLL gene rearrangements in children with acute leukemia and with 11q23 abnormalities. Leukemia 13: 1713–1720, 1999

    Article  PubMed  CAS  Google Scholar 

  96. Kolomietz E, Al Maghrabi J, Brennan S, et al. Primary chromosomal rearrangements of leukemia are frequently accompanied by extensive submicroscopic deletions and may lead to altered prognosis. Blood 97: 3581–3588, 2001

    Article  PubMed  CAS  Google Scholar 

  97. Harrison CJ, Cuneo A, Clark R et al. Ten novel 11q23 chromosomal partner sites. European 11q23 Workshop participants. Leukemia 12: 811–822, 1998

    Article  PubMed  CAS  Google Scholar 

  98. Huret JL, Dessen P, Bernheim A. An atlas of chromosomes in hematological malignancies. Example: 11q23 and MLL partners. Leukemia 15: 987–989, 2001

    Article  PubMed  CAS  Google Scholar 

  99. Cimino G, Moir DT, Canaani O, et al. Cloning of ALL-1, the locus involved in leukemias with the t(4;11)(q21;q23), t(9;11)(p22;q23), and t(11;19)(q23;p13) chromosome translocations. Cancer Res 51: 6712–6714, 1991

    PubMed  CAS  Google Scholar 

  100. Zieman-van der Poel S, McCabe NR, Gill HJ et al. Identification of a gene, MLL, that spans the breakpoint in 11q23 translocations associated with human leukemias. Proc Natl Acad Sci 88: 10735–10739, 1991

    Article  Google Scholar 

  101. Ayton PM, Cleary ML. Molecular mechanisms of leukemogenesis mediated by MLL fusion proteins. Oncogene 20: 5695–5707, 2001

    Article  PubMed  CAS  Google Scholar 

  102. Armstrong SA, Staunton JE, Silverman LB, et al. MLL translocations specify a distinct gene expression profile that distinguishes a unique leukemia. Nat Genet: 30: 41–47, 2002

    Article  PubMed  CAS  Google Scholar 

  103. Armstrong SA, Kung AL, Mabon ME, et al. Inhibition of FLT3 in MLL. Validation of a therapeutic target identified by gene expression based classification. Cancer Cell 3: 173–183, 2003

    Article  PubMed  CAS  Google Scholar 

  104. Brown P, Levis M, Shurtleff S, et al. FLT3 inhibition selectively kills childhood acute lymphoblastic leukemia cells with high levels of FLT3 expression. Blood 105: 812–820, 2005

    Article  PubMed  CAS  Google Scholar 

  105. Carroll AJ, Crist WM, Parmley RT, et al. Pre-B cell leukemia associated with chromosome translocation 1;19. Blood 63: 721–724, 1984

    PubMed  CAS  Google Scholar 

  106. Wiemels JL, Leonard BC, Wang Y, et al. Site-specific translocation and evidence of postnatal origin of the t(1;19) E2A-PBX1 fusion in childhood acute lymphoblastic leukemia. Proc Natl Acad Sci USA 99: 15101–15106, 2002

    Article  PubMed  CAS  Google Scholar 

  107. Raimondi SC, Behm FG, Roberson PK, et al. Cytogenetics of pre-B-cell acute lymphoblastic leukemia with emphasis on prognostic implications of the t(1;19). J Clin Oncol 8: 1380–1388, 1990

    PubMed  CAS  Google Scholar 

  108. Kamps MP, Murre C, Sun XH, Baltimore D. A new homeobox gene contributes the DNA binding domain of the t(1;19) translocation protein in pre-B ALL. Cell 60: 547–555, 1990

    Article  PubMed  CAS  Google Scholar 

  109. Mellentin JD, Murre C, Donlon TA, et al. The gene for enhancer binding proteins E12/E47 lies at the t(1;19) breakpoint in acute leukemias. Science 246: 379–382, 1989

    Article  PubMed  CAS  Google Scholar 

  110. Privitera E, Luciano A, Ronchetti D, et al. Molecular variants of the 1;19 chromosomal translocation in pediatric acute lymphoblastic leukemia (ALL). Leukemia 8: 554–559, 1994

    PubMed  CAS  Google Scholar 

  111. Shearer BM, Flynn HC, Knudson RA, Ketterling RP. Interphase FISH to detect PBX1/E2A fusion resulting from the der(19)t(1;19)(q23;p13.3) or t(1;19)(q23;p13.3) in paediatric patients with acute lymphoblastic leukaemia. Br J Haematol 129: 45–52, 2005

    Article  PubMed  CAS  Google Scholar 

  112. van der Burg M, Poulsen TS, Hunger SP, et al. Split-signal FISH for detection of chromosome aberrations in acute lymphoblastic leukemia. Leukemia 18: 895–908, 2004

    Article  PubMed  CAS  Google Scholar 

  113. Prima V, Gore L, Caires A, et al. Cloning and functional characterization of MEF2D/DAZAP1 and DAZAP1/MEF2D fusion proteins created by a variant t(1;19)(q23;p13.3) in acute lymphoblastic leukemia. Leukemia 19: 806–813, 2005

    Article  PubMed  CAS  Google Scholar 

  114. Privitera E, Kamps MP, Hayashi Y, et al. Different molecular consequences of the 1;19 chromosomal translocation in childhood B-cell precursor acute lymphoblastic leukemia. Blood 79: 1781–1788, 1992

    PubMed  CAS  Google Scholar 

  115. Yuki Y, Imoto I, Imaizumi M, et al. Identification of a novel fusion gene in a pre-B acute lymphoblastic leukemia with t(1;19)(q23;p13). Cancer Sci 95: 503–507, 2004

    Article  PubMed  CAS  Google Scholar 

  116. Raimondi SC, Privitera E, Williams DL, et al. New recurring chromosomal translocations in childhood acute lymphoblastic leukemia. Blood 77: 2016–2022, 1991

    PubMed  CAS  Google Scholar 

  117. Inaba T, Roberts WM, Shapiro LH, et al. Fusion of the leucine zipper gene HLF to the E2A gene in human acute B- lineage leukemia. Science 257: 531–534, 1992

    Article  PubMed  CAS  Google Scholar 

  118. Inukai T, Inaba T, Ikushima S, Look AT. The AD1 and AD2 transactivation domains of E2A are essential for the antiapoptotic activity of the chimeric oncoprotein E2A-HLF. Mol Cell Biol 18: 6035–6043, 1998

    PubMed  CAS  Google Scholar 

  119. Brambillasca F, Mosna G, Colombo M, et al. Identification of a novel molecular partner of the E2A gene in childhood leukemia. Leukemia 13: 369–375, 1999

    Article  PubMed  CAS  Google Scholar 

  120. Raimondi SC, Zhou Y, Shurtleff SA, et al. Near-triploidy and near-tetraploidy in childhood acute lymphoblastic leukemia: Association with B-lineage blast cells carrying the ETV6-RUNX1 fusion, T-lineage immunophenotype, and favorable outcome. Cancer Genet Cytogenet 169: 50–57, 2006

    Article  PubMed  CAS  Google Scholar 

  121. Heerema NA, Sather HN, Sensel MG, et al. Prognostic impact of trisomies of chromosomes 10, 17, and 5 among children with acute lymphoblastic leukemia and high hyperdiploidy (> 50 chromosomes). J Clin Oncol 18: 1876–1887, 2000

    PubMed  CAS  Google Scholar 

  122. Sutcliffe MJ, Shuster JJ, Sather HN, et al. High concordance from independent studies by the Children’s Cancer Group (CCG) and Pediatric Oncology Group (POG) associating favorable prognosis with combined trisomies 4, 10, and 17 in children with NCI standard-risk B-precursor acute lymphoblastic leukemia: A Children’s Oncology Group (COG) initiative. Leukemia 19: 734–740, 2005

    Article  PubMed  CAS  Google Scholar 

  123. Ito C, Kumagai M, Manabe A, et al. Hyperdiploid acute lymphoblastic leukemia with 51 to 65 chromosomes: A distinct biological entity with a marked propensity to undergo apoptosis. Blood 93: 315–320, 1999

    PubMed  CAS  Google Scholar 

  124. Maia AT, Tussiwand R, Cazzaniga G, et al. Identification of preleukemic precursors of hyperdiploid acute lymphoblastic leukemia in cord blood. Genes Chromosom Cancer 40: 38–43, 2004

    Article  PubMed  Google Scholar 

  125. Greaves MF, Wiemels J. Origins of chromosome translocations in childhood leukaemia. Nat Rev Cancer 3: 639–649, 2003

    Article  PubMed  CAS  Google Scholar 

  126. Gruszka-Westwood AM, Horsley SW, Martinez-Ramirez A, et al. Comparative expressed sequence hybridization studies of high-hyperdiploid childhood acute lymphoblastic leukemia. Genes Chromosom Cancer 41: 191–202, 2004

    Article  PubMed  CAS  Google Scholar 

  127. Yeoh EJ, Ross ME, Shurtleff SA, et al. Classification, subtype discovery, and prediction of outcome in pediatric acute lymphoblastic leukemia by gene expression profiling. Cancer Cell 1: 133–143, 2002

    Article  PubMed  CAS  Google Scholar 

  128. Raimondi SC, Roberson PK, Pui CH, Behm FG, Rivera GK. Hyperdiploid (47–50) acute lymphoblastic leukemia in children. Blood 79: 3245–3252, 1992

    PubMed  CAS  Google Scholar 

  129. Raynaud SD, Dastugue N, Zoccola D, et al. Cytogenetic abnormalities associated with the t(12;21): A collaborative study of 169 children with t(12;21)-positive acute lymphoblastic leukemia. Leukemia 13: 1325–1330, 1999

    Article  PubMed  CAS  Google Scholar 

  130. Harrison CJ, Moorman AV, Broadfield ZJ, et al. Three distinct subgroups of hypodiploidy in acute lymphoblastic leukaemia. Br J Haematol 125: 552–559, 2004

    Article  PubMed  Google Scholar 

  131. Raimondi SC, Zhou Y, Mathew S, et al. Reassessment of the prognostic significance of hypodiploidy in pediatric patients with acute lymphoblastic leukemia. Cancer 98: 2715–2722, 2003

    Article  PubMed  Google Scholar 

  132. Heerema NA, Nachman JB, Sather HN, et al. Hypodiploidy with less than 45 chromosomes confers adverse risk in childhood acute lymphoblastic leukemia: A report from the children’s cancer group. Blood 94: 4036–4045, 1999

    Google Scholar 

  133. Cazzola M, Malcovati L. Myelodysplastic syndromes–coping with ineffective hematopoiesis. N Engl J Med 352: 536–538, 2005

    Article  PubMed  CAS  Google Scholar 

  134. Steensma DP, Tefferi A. The myelodysplastic syndrome(s): A perspective and review highlighting current controversies. Leuk Res 27: 95–120, 2003

    Article  PubMed  Google Scholar 

  135. Sole F, Luno E, Sanzo C, et al. Identification of novel cytogenetic markers with prognostic significance in a series of 968 patients with primary myelodysplastic syndromes. Haematologica 90: 1168–1178, 2005

    PubMed  CAS  Google Scholar 

  136. Fenaux P. Chromosome and molecular abnormalities in myelodysplastic syndromes. Int J Hematol 73: 429–437, 2001

    Article  PubMed  CAS  Google Scholar 

  137. Rubin CM, Arthur DC, Woods WG, et al. Therapy-related myelodysplastic syndrome and acute myeloid leukemia in children: Correlation between chromosomal abnormalities and prior therapy. Blood 78: 2982–2988, 1991

    PubMed  CAS  Google Scholar 

  138. Greenberg P, Cox C, LeBeau M, et al. International scoring system for evaluating prognosis in myelodysplastic syndromes. Blood 89: 2079–2088, 1997

    PubMed  CAS  Google Scholar 

  139. Pfeilstocker M, Reisner R, Nosslinger T, et al. Cross-validation of prognostic scores in myelodysplastic syndromes on 386 patients from a single institution confirms importance of cytogenetics. Br J Haematol 106: 455–463, 1999

    Article  PubMed  CAS  Google Scholar 

  140. Sasaki H, Manabe A, Kojima S, et al. Myelodysplastic syndrome in childhood: A retrospective study of 189 patients in Japan. Leukemia 15: 1713–1720, 2001

    PubMed  CAS  Google Scholar 

  141. Vardiman JW, Harris NL, Brunning RD. The World Health Organization (WHO) classification of the myeloid neoplasms. Blood 100: 2292–2302, 2002

    Article  PubMed  CAS  Google Scholar 

  142. Hasle H, Niemeyer CM, Chessells JM, et al. A pediatric approach to the WHO classification of myelodysplastic and myeloproliferative diseases. Leukemia 17: 277–282, 2003

    Article  PubMed  CAS  Google Scholar 

  143. Boultwood J, Fidler C, Strickson AJ, et al. Narrowing and genomic annotation of the commonly deleted region of the 5q- syndrome. Blood 99: 4638–4641, 2002

    Article  PubMed  CAS  Google Scholar 

  144. Le Beau MM, Espinosa R, Davis EM, et al. Cytogenetic and molecular delineation of a region of chromosome 7 commonly deleted in malignant myeloid diseases. Blood 88: 1930–1935, 1996

    PubMed  Google Scholar 

  145. Adamson DJ, Dawson AA, Bennett B, King DJ, Haites NE. p53 mutation in the myelodysplastic syndromes. Br J Haematol 89: 61–66, 1995

    PubMed  CAS  Google Scholar 

  146. Bench AJ, Nacheva EP, Hood TL, et al. Chromosome 20 deletions in myeloid malignancies: Reduction of the common deleted region, generation of a PAC/BAC contig and identification of candidate genes. UK Cancer Cytogenetics Group (UKCCG). Oncogene 19: 3902–3913, 2000

    Article  PubMed  CAS  Google Scholar 

  147. Nimer SD. Clinical management of myelodysplastic syndromes with interstitial deletion of chromosome 5q. J Clin Oncol 24: 2576–2582, 2006

    Article  PubMed  CAS  Google Scholar 

  148. Van den Berghe H, Michaux L. 5q-, twenty-five years later: A synopsis. Cancer Genet Cytogenet 94: 1–7, 1997

    Article  PubMed  Google Scholar 

  149. Passmore SJ, Hann IM, Stiller CA, et al. Pediatric myelodysplasia: A study of 68 children and a new prognostic scoring system. Blood 85: 1742–1750, 1995

    PubMed  CAS  Google Scholar 

  150. Giagounidis AA, Germing U, Aul C. Biological and prognostic significance of chromosome 5q deletions in myeloid malignancies. Clin Cancer Res 12: 5–10, 2006

    Article  PubMed  CAS  Google Scholar 

  151. List A, Kurtin S, Roe DJ, et al. Efficacy of lenalidomide in myelodysplastic syndromes. N Engl J Med 352: 549–557, 2005

    Article  PubMed  CAS  Google Scholar 

  152. Luna-Fineman S, Shannon KM, Atwater SK, et al. Myelodysplastic and myeloproliferative disorders of childhood: A study of 167 patients. Blood 93: 459–466, 1999

    PubMed  CAS  Google Scholar 

  153. Hasle H, Arico M, Basso G, et al. Myelodysplastic syndrome, juvenile myelomonocytic leukemia, and acute myeloid leukemia associated with complete or partial monosomy 7. European Working Group on MDS in Childhood (EWOG-MDS). Leukemia 13: 376–385, 1999

    Article  PubMed  CAS  Google Scholar 

  154. Smith SM, Le Beau MM, Huo D, et al. Clinical-cytogenetic associations in 306 patients with therapy-related myelodysplasia and myeloid leukemia: The University of Chicago series. Blood 102: 43–52, 2003

    Article  PubMed  CAS  Google Scholar 

  155. Bloomfield CD, Archer KJ, Mrozek K, et al. 11q23 balanced chromosome aberrations in treatment-related myelodysplastic syndromes and acute leukemia: Report from an international workshop. Genes Chromosom Cancer 33: 362–378, 2002

    Google Scholar 

  156. Harada H, Harada Y, Tanaka H, Kimura A, Inaba T. Implications of somatic mutations in the AML1 gene in radiation-associated and therapy-related myelodysplastic syndrome/acute myeloid leukemia. Blood 101: 673–680, 2003

    Article  PubMed  CAS  Google Scholar 

  157. Giagounidis AAN Germing U, Waincoat JS. Hematological malignancies: The 5q- syndrome. Hematology 9: 271–277, 2004

    Article  CAS  Google Scholar 

  158. List A, Dewald G, Bennet J. Lenalidomide in the Myelodysplastic Syndrome with Chromosome 5q Deletion. N Engl J Med 355:1456–1465, 2006

    Article  PubMed  CAS  Google Scholar 

  159. Van Etten RA, Shannon KM. Focus on myeloproliferative diseases and myelodysplastic syndromes. Cancer Cell 6: 547–552, 2004

    Article  PubMed  Google Scholar 

  160. Anastasiadou E, Schwaller J. Role of constitutively activated protein tyrosine kinases in malignant myeloproliferative disorders: An update. Curr Opin Hematol 10: 40–48, 2003

    Article  PubMed  CAS  Google Scholar 

  161. Baxter EJ, Kulkarni S, Vizmanos JL, et al. Novel translocations that disrupt the platelet-derived growth factor receptor beta (PDGFRB) gene in BCR-ABL-negative chronic myeloproliferative disorders. Br J Haematol 120: 251–256, 2003

    Article  PubMed  CAS  Google Scholar 

  162. Macdonald D, Reiter A, Cross NC. The 8p11 myeloproliferative syndrome: A distinct clinical entity caused by constitutive activation of FGFR1. Acta Haematol 107: 101–107, 2002

    Article  PubMed  CAS  Google Scholar 

  163. Demiroglu A, Steer EJ, Heath C, et al. The t(8;22) in chronic myeloid leukemia fuses BCR to FGFR1: Transforming activity and specific inhibition of FGFR1 fusion proteins. Blood 98: 3778–3783, 2001

    Article  PubMed  CAS  Google Scholar 

  164. Cools J, DeAngelo DJ, Gotlib J, et al. A tyrosine kinase created by fusion of the PDGFRA and FIP1L1 genes as a therapeutic target of imatinib in idiopathic hypereosinophilic syndrome. N Engl J Med 348: 1201–1214, 2003

    Article  PubMed  CAS  Google Scholar 

  165. Martinelli G, Malagola M, Ottaviani E, et al. Imatinib mesylate can induce complete molecular remission in FIP1L1-PDGFR-a positive idiopathic hypereosinophilic syndrome. Haematologica 89: 236–237, 2004

    PubMed  Google Scholar 

  166. von Bubnoff N, Gorantla SP, Thone S, Peschel C, Duyster J. The FIP1L1-PDGFRA T674I mutation can be inhibited by the tyrosine kinase inhibitor AMN107 (nilotinib). Blood 107: 4970–4971, 2006

    Article  Google Scholar 

  167. Boissinot M, Garand R, Hamidou M, Hermouet S. The JAK2-V617F mutation and essential thrombocythemia features in a subset of patients with refractory anemia with ring sideroblasts (RARS). Blood 108: 1781–1782, 2006

    Article  PubMed  CAS  Google Scholar 

  168. James C, Ugo V, Le Couedic JP, et al. A unique clonal JAK2 mutation leading to constitutive signaling causes polycythaemia vera. Nature 434: 1144–1148, 2005

    Article  PubMed  CAS  Google Scholar 

  169. Hayne C, Winer E, Williams T, et al. Acute lymphoblastic leukemia with a 4;11 translocation analyzed by a combined strategy of conventional cytogenetics, FISH, morphology and cytometry, and an up-to-date review of the literature. Exp Mol Pathol 81: 62–71, 2006

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. Roger Mark for reviewing the manuscript; Dr. Fernando Chaves and Dr. Yvonne Mark for assisting with the preparation of the figures. We thank Dr. Nicole Lamanna for helpful suggestions and discussion. Contributions of our laboratories for illustrative figures are acknowledged. The supports of Dr. Hans Kaiser, Ms. Turid Knutsen and Dr. JacquelineWhang-Peng are also acknowledged. This work was partly supported by the intramural research programs of the National Cancer Institute and the National Human Genome Research Institute. The opinions expressed herein are those of the authors and do not necessarily reflect official policy of the National Institutes of Health or of any other component of the government of the United States of America.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hon Fong L. Mark .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Mark, H.F.L., Raimondi, S.C., Sokolic, R. (2010). Chromosomal Abnormalities in Selected Hematopoietic Malignancies Detected by Conventional and Molecular Cytogenetics: Diagnostic and Prognostic Significance. In: Coppola, D. (eds) Mechanisms of Oncogenesis. Cancer Growth and Progression, vol 12. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3725-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-90-481-3725-1_6

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-3724-4

  • Online ISBN: 978-90-481-3725-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics