Skip to main content

Chemical Carcinogenesis Role of Chloroform – Further Studies

  • Chapter
  • First Online:
Mechanisms of Oncogenesis

Part of the book series: Cancer Growth and Progression ((CAGP,volume 12))

  • 885 Accesses

Abstract

Since the previous version of this chapter [1], there have been numerous studies on chloroform (CHC~:J (CAS No. 67-66-3)) in order to explain the mechanism of its action. CHCl3 had detrimental or beneficial effects in various animal studies, depending on the solvent, the species, and the sex of the animals, in addition to other factors. The presence of very small levels of CHCl3 in chlorine-treated water remains a matter for much discussion among environmental groups, the US EPA and the community of toxicologists [2]. The International Agency for Research on Cancer (IARC) considers that there is inadequate evidence for the carcinogenicity of chlorinated drinking water in either animals or humans [3]. A report that weathering of organic matter leads to accumulation of halogenated organic compounds indicates that such occurrences should be considered in risk assessment [4]

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. ACGIH. 2007 TLVs® and BEIs®. Based on the Documentation of the Threshold Limit Values for Chemical Substances and Physical Agents & Biological Exposure Indices. ACGIH, Cincinnati, OH, 2007.

    Google Scholar 

  2. Hogue C. Chloroform and cancer. Chem Eng News 79(44) 11, 2001.

    Google Scholar 

  3. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans. Vol. 52, Chlorinated Drinking Water; Chlorination By-Products; Some Other Halogenated Compounds; Cobalt and Cobalt Compounds, pp. 45–141, IARC, Lyon, 1991.

    Google Scholar 

  4. Myneni SCB. Formation of stable chlorinated hydrocarbons in weathering plant material. Science 295: 1039–1041, 2002.

    Article  Google Scholar 

  5. Levesque B, Ayotti P, Tardif R, Ferron L, Gingras S, Schlouch E, Gingras G, Levallois P, Dewailly E. Cancer risk associated with household exposure to chloroform. J Toxicol Environ Health 65: 489–502, 2002.

    Article  CAS  Google Scholar 

  6. Butterworth BE, Templin MV, Borghoff SJ, Conolly RB, Kedderis GL, Wolf DC. The role of regenerative cell proliferation in chloroform-induced cancer. Toxicol Lett 82/83: 23–26, 1995.

    Article  CAS  Google Scholar 

  7. Larson JL, Wolf DC, Butterworth BE. Acute hepatotoxic and nephrotoxic effects of chloroform on male F-344 rats and female B6C3F1 mice. Fundam Appl Toxicol 20: 302–315, 1993.

    Article  CAS  PubMed  Google Scholar 

  8. Larson JL, Wolf DC, Butterworth BE. Induced cytotoxicity and cell proliferation in the hepatotoxicity of chloroform in female B6C3F1 mice: comparison of administration by gavage in corn oil vs ad libitum in drinking water. Fundam Appl Toxicol 22: 90–102, 1994.

    Article  CAS  PubMed  Google Scholar 

  9. Larson JL, Wolf DC, Butterworth BE. Induced cytolethality and regenerative cell proliferation in the livers and kidneys of male B6C3F1 mice given chloroform by gavage. Fundam Appl Toxicol 23: 537–543, 1994.

    Article  CAS  PubMed  Google Scholar 

  10. Larson JL, Wolf DC, Butterworth BE. Induced regenerative cell proliferation in livers and kidneys of male F-344 rats given chloroform in corn oil by gavage or ad libitum in drinking water. Toxicology 95: 73–86, 1995.

    Article  CAS  PubMed  Google Scholar 

  11. Pereira MA. Route of administration determines whether chloroform enhances or inhibits cell proliferation in the liver of B6C3F1 mice. Fundam Appl Toxicol 23: 87–92, 1994.

    Article  CAS  PubMed  Google Scholar 

  12. Templin MV, Constan AA, Wold DC, Wong BA, Butterworth BE. Patterns of chloroform-induced regenerative cell proliferation in BDF mice correlate with organ specificity and dose-response/tumor formation. Carcinogenesis 19: 187–193, 1998.

    Article  CAS  PubMed  Google Scholar 

  13. Templin MV, Jamison KC, Sprankle CS, Wolf DC, Wong BA, Butterworth BE. Chloroform-induced cytotoxicity and regenerative cell proliferation—in the kidneys and liver of BDFl mice. Cancer Lett 108: 225–231, 1996.

    Article  CAS  PubMed  Google Scholar 

  14. Templin MV, Jamison KC, Wolf DC, Morgan KT, Butterworth BE. Comparison of chloroform-induced toxicity in the kidneys, liver, and nasal passages of male Osborne-Mendel rats and F-344 rats. Cancer Lett 104: 71–78, 1996.

    Article  CAS  PubMed  Google Scholar 

  15. Bull RJ, Brown JM, Meierhenry EA, Jorgenson TA, Robinson M, Stober JA. Enhancement of the hepatotoxicity of chloroform by corn oil: Implications for chloroform carcinogenesis. Environ Health Perspect 69: 49–58, 1986.

    Article  CAS  PubMed  Google Scholar 

  16. Dix KJ, Kedderis GL, Borghoff SJ. Vehicle-dependent oral absorption and target tissue dosimetry of chloroform in male rats and female mice. Toxicol Lett 91: 197–209, 1997.

    Article  CAS  PubMed  Google Scholar 

  17. Raymond P, Plaa GL. Effect of dosing vehicle on the hepatotoxicity of CC14 and nephrotoxicity of CHCl3 in rats. J Toxicol Environ Health 51: 463–476, 1997.

    Article  CAS  PubMed  Google Scholar 

  18. El-shenawy NS, Abdel-Rahman MS. The mechanism of chloroform toxicity in isolated rat hepatocytes. Toxicol Lett 69: 77–85, 1993.

    Article  CAS  PubMed  Google Scholar 

  19. Plaa GL. Chlorinated methanes and liver injury: Highlights of the past 50 years. Annu Rev Pharmacol Toxicol 40: 43–65, 2000.

    Article  CAS  Google Scholar 

  20. Testai E, Gemma S, Vittozzi L. Bioactivation of chloroform in hepatic microsomes from rodent strains susceptible or resistant to CHCl3 carcinogenesis. Toxicol Appl Pharmacol 114: 197–203, 1992.

    Article  CAS  Google Scholar 

  21. ACGIH. 2002 TLVs® and BE1s®, Threshold Limit Values for Chemical Substances and Physical Agents & Biological Exposure Indices. ACGIH, Cincinnati, OH, 2002.

    Google Scholar 

  22. Constan AA, Sprankle CS, Peters JM, Kedderis GL, Everitt JI, Wong BA, Gonzalez FL. Metabolism of chloroform by cytochrome P4502E1 is required for induction of toxicity in the liver, kidney and nose of male mice. Toxicol Appl Pharmacol 160: 120–126, 1999.

    Article  CAS  PubMed  Google Scholar 

  23. Yamamoto S, Aiso S, Ikawa N, Matsushima T. Carcinogenesis studies of chloroform in F344 rats and BDFl mice. An inhalation study of chloroform. Initial report. Proceedings of the Fifty-Third Annual Meeting of the Japanese Cancer Association, 1994.

    Google Scholar 

  24. Templin MV, Larson JL, Butterworth BE, Jamison KC, Leininger JR, Mery S, Morgan KT, Wong BA, Wolf DC. A 90-day chloroform inhalation study in F-344 rats: Profile of toxicity and relevance to cancer studies. Fundam Appl Toxicol 32: 109–125, 1996.

    Article  CAS  PubMed  Google Scholar 

  25. Larson JL, Wolf DC, Morgan KT, Mery S, Butterworth BE. The toxicity of 1-week exposures to inhaled chloroform in female B6C3F1 mice and male F-344 rats. Fundam Appl Toxicol 22: 431–446, 1994.

    Article  CAS  PubMed  Google Scholar 

  26. Larson JL, Templin MV, Wolf DC, Jamison KC, Leininger JR, Mery S, Morgan KT, Wong BA, Conolly RB. A 90-day chloroform inhalation study in female and male B6C3F1 mice: Implications for cancer risk assessment. Fundam Appl Toxicol 30: 118–137, 1996.

    Article  CAS  PubMed  Google Scholar 

  27. Mery S, Larson JL, Butterworth BE, Wolf DC, Harden R, Morgan KT. Nasal toxicity in male F-344 rats and female B6C3F1 mice following a 1-week inhalation exposure. Toxicol Appl Pharmacol 125: 214–227, 1994.

    Article  CAS  PubMed  Google Scholar 

  28. Keegan TE, Simmons JE, Pegram RA. NOAEL and LOAEL determination of acute hepatotoxicity for chloroform and bromodichloromethane delivered in an aqueous vehicle to F344 rats. J Toxicol Environ Health 55: 65–75, 1998.

    Article  CAS  Google Scholar 

  29. Gemma S, Faccioli S, Chieco P, Sbraccia M, Testai E, Vittozzi L. In vivo CHCl3 bioactivation, toxicokinetics, toxicity and induced compensatory cell proliferation in B6C3F1 male mice. Toxicol Appl Pharmacol 141: 394–402, 1996.

    Article  CAS  PubMed  Google Scholar 

  30. Jorgenson TA, Meierhenry EF, Rushbrook CA. Cardinogenicity of chloroform in drinking water to male Osborne-Mendel rats and female B6C3F1 mice. Fundam Appl Toxicol 5: 760–769, 1985.

    Article  CAS  PubMed  Google Scholar 

  31. Hard GC, Boorman GA, Wolf DC. Re-evaluation of the 2-year chloroform drinking water carcinogenicity bioassay in Osborne-Mendel rats supports chronic renal tubule injury as the mode of action underlying the renal tumor response. Toxicol Sci 53: 237–244, 2000.

    Article  CAS  PubMed  Google Scholar 

  32. Tumasonis CF, McMartin DN, Bush B. Toxicity of chloroform and bromodichloromethane when administered over a lifetime in rats. J Environ Pathol Toxicol Oncol 7(4): 55–63, 1987.

    CAS  PubMed  Google Scholar 

  33. Melnick RL, Kohn MC, Dunnick JK, Leininger JR. Regenerative hyperplasia is not required for liver tumor induction in female B6C3F1 mice exposed to trihalomethanes. Toxicol Appl Pharmacol 148: 137–147, 1998.

    Article  CAS  PubMed  Google Scholar 

  34. Wang P-Y, Kaneko T, Sato A, Charboneau M, Plaa GL. Dose- and route-dependent alteration of metabolism and toxicity of chloroform in fed and fasting rats. Toxicol Appl Pharmacol 135: 119–126, 1995.

    Article  CAS  PubMed  Google Scholar 

  35. Gearhart JM, Seckel C, Vinegar A. In vivo metabolism of chloroform in B6C3F1 mice determined by the method of gas exchange: The effects of body temperature on tissue partition coefficients and metabolism. Toxicol Appl Pharmacol 119: 258–266, 1993.

    Article  CAS  PubMed  Google Scholar 

  36. Smith AE, Gray GM, Evans JS. The ability of predicted internal dose measures to reconcile tumor bioassay data for chloroform. Regul Toxicol Pharmacol 21: 339–351, 1995.

    Article  CAS  PubMed  Google Scholar 

  37. Nakajima T, Elovaara E, Okino T, Gelboin HV, Klockars M, Riihimaki V, Aoyama T, Vainio H. Different contributions of cytochrome P450 2E1 and P450 2B1/2 to chloroform hepatotoxicity in the rat. Toxicol Appl Pharmacol 133: 215–222, 1995.

    Article  CAS  PubMed  Google Scholar 

  38. Camus-Randon AM, Raffalli F, Bereziat J-C, McGregor D, Konstandi M, Lang MA. Liver injury and expression of cytochromes P450: Evidence that regulation of CYP2A5 is different from that of other major xenobiotic metabolizing CYP enzymes. Toxicol Appl Pharmacol 138: 140–148, 1996.

    Article  CAS  PubMed  Google Scholar 

  39. Ray SD, Mehendale HM. Potentiation of CC14 and CHCl3 hepatotoxicity and lethality by various alcohols. Fundam Appl Toxicol 15: 429–440, 1990.

    Article  CAS  PubMed  Google Scholar 

  40. Plummer, de la M, Hall P, Ilsley AH, Jenner MA, Cousins MJ. Influence of enzyme induction and exposure profile on liver injury due to chlorinated hydrocarbon inhalation. Pharmacol Toxicol 67: 329–335, 1990.

    Article  CAS  PubMed  Google Scholar 

  41. Vezina M, Kobusch AB, De Souich P, Greselin E, Plaa, GL. Potentiation of chloroform-induced hepatotoxicity by methyl isobutyl ketone and two metabolites. Can J Physiol Pharmacol 68: 1055–1061, 1990.

    CAS  PubMed  Google Scholar 

  42. Smith JH, Hewitt WR, Hook JB. Role of intrarenal biotransformation in chloroform induced nephrotoxicity in rats. Toxicol Appl Pharmacol 79: 166–174, 1985.

    Article  CAS  PubMed  Google Scholar 

  43. Brady JF, Li D, Ishizaki H, Lee M, Ning SM, Xiao F, Yang CS. Induction of cytochromes P450IIE1 and P450IIB1 by secondary ketones and the role of P450IIE1 in chloroform metabolism. Toxicol Appl Pharmacol 100: 342–349, 1989.

    Article  CAS  PubMed  Google Scholar 

  44. Borzelleca JF, O’Hara TM, Gennings C, Granger RH, Sheppard MA, Condie LW. Interactions of water contaminants. I. Plasma enzyme activity and response surface methodology following gavage administration of CC14 and CHCl3 or TCE singly and in combination in the rat. Fundam Appl Toxicol 14: 477–490, 1990.

    Article  CAS  PubMed  Google Scholar 

  45. Pereira MA, Grothaus M. Chloroform in drinking water prevents hepatic cell proliferation induced by chloroform administered by gavage in corn oil to mice. Fundam Appl Toxicol 37: 82–87, 1997.

    Article  CAS  PubMed  Google Scholar 

  46. Lind RC, Gandolfi AJ. Late dimethyl sulfoxide administration provides a protective action against chemically induced injury in both the liver and the kidney. Toxicol Appl Pharmacol 142: 201–207, 1997.

    Article  CAS  PubMed  Google Scholar 

  47. Letteron P, Degott C, Labbe G, Larrey D, Descatoire V. Methoxsalen decreases the metabolic activation and prevents the hepatotoxicity and nephrotoxicity of chloroform in mice. Toxicol Appl Pharmacol 91: 266–273, 1987.

    Article  CAS  PubMed  Google Scholar 

  48. Ebel RE. Pyrazole treatment of rats potentiates CC14 but not CHCl3 hepatotoxicity. Biochem Biophys Res Commun 161: 615–618, 1989.

    Article  CAS  PubMed  Google Scholar 

  49. Ebel RE, Barlow RL, McGrath EA. Chloroform hepatotoxicity in the Mongolian gerbil. Fundam Appl Toxicol 8: 207–216, 1987.

    Article  CAS  PubMed  Google Scholar 

  50. Daniel FB, DeAngelo AB, Stober JA, Pereira MA, Olson GR. Chloroform inhibition of 1,2-dimethylhydrazine-induced gastrointestinal tract tumors in the Fisher 344 rat. Fundam Appl Toxicol 13: 40–45, 1989.

    Article  CAS  PubMed  Google Scholar 

  51. Reddy TV, Daniel FB, Lin EL. Chloroform inhibits the development of diethylnitrosamine-initiated, pheno-barbital-promoted gamma-glutamyltranspeptidase and placental form glutathione-S-transferase positive foci in rat liver. Carcinogenesis 13: 1325–1330, 1992.

    Article  CAS  PubMed  Google Scholar 

  52. Lilly PD, Ross TM, Pegram RA. Trihalomethane comparative toxicity: Acute renal and hepatic toxicity of chloroform and bromodichloromethane following aqueous gavage. Fundam Appl Toxicol 40: 101–110, 1997.

    Article  CAS  PubMed  Google Scholar 

  53. Andersen ME, Meek ME, Boorman GE, Brusick DJ, Cohen SM, Dragan YP, Frederick CB, Goodman JI, Hard GC, O’Flaherty EJ, Robinson DE. Lessons learned in applying the US EPA proposed cancer guidelines to specific compounds. Toxicol Sci 53: 159–172, 2000.

    Article  CAS  PubMed  Google Scholar 

  54. Golden RJ, Holm SE, Robinson DE, Julkunen PH, Reese EA. Chloroform mode of action: Implications for cancer risk assessment. Regul Toxicol Pharmacol 26: 142–155, 1997.

    Article  CAS  PubMed  Google Scholar 

  55. Wolf DC, Butterworth BE. Risk assessment of inhaled chloroform based on its mode of action. Toxicol Pathol 25: 49–52, 1997.

    Article  CAS  PubMed  Google Scholar 

  56. Jo W-K, Weisel CP, Lioy PJ. Chloroform exposures and the health risk associated with multiple uses of chlorinated tap water. Risk Anal 10: 581–585, 1990.

    Article  CAS  Google Scholar 

  57. Weisel CP, Jo W-K. Ingestion, inhalation, and dermal exposures to chloroform and trichloroethene from tap water. Environ Health Perspect 104: 48–51, 1996.

    Article  CAS  PubMed  Google Scholar 

  58. Yamamoto S, Kasai T, Matsumoto M, Nishigawa T, Arito H, Nagano K, Matsushima T. Carcinogenicity and chronic toxicity in rats and mice exposed to chloroform by inhalation. J Occup Health 44: 283–293, 2002.

    Article  CAS  Google Scholar 

  59. Sehata S, Maejima T, Wantanabe M, Ogata S, Makino T, Tanaka K, Manabe S, Takaoka M. Twenty-six week carcinogenicity study of chloroform in CB6F1 rasH2- transgenic mice. Toxicol Pathol 30: 328–338, 2002.

    Article  CAS  PubMed  Google Scholar 

  60. Fabrizi L, Taylor GW, Canas B, Boobis AR, Edwards RJ. Adduction of the chloroform metabolite phosgene to lysine residues of human histone H2B. Chem Res Toxicol 16: 266–275, 2003.

    Article  CAS  PubMed  Google Scholar 

  61. Gemma S, Testai E, Chieco P, Vittozzi L. Bioactivation, toxicokinetics and acute effects of chloroform in Fisher 344 and Osborne Mendel male rats. J Appl Toxicol 24: 203–210, 2004.

    Article  CAS  PubMed  Google Scholar 

  62. Beddowes EJ, Faux SP, Chipman JK. Chloroform, carbon tetrachloride and glutathione depletion induce secondary genotoxicity in liver cells via oxidative stress. Toxicology 187: 101–115, 2003.

    Article  CAS  PubMed  Google Scholar 

  63. Burke AS, Redeker K, Kurten RC, James LP, Hinson JA. Mechanisms of chloroform-induced hepatotoxicity: oxidative stress and mitochondrial permeability transition in freshly isolated mouse hepatocytes. J Toxicol Environ Health A 70: 1936–1945, 2007.

    Article  CAS  PubMed  Google Scholar 

  64. Anand SS, Philip BK, Palkar PS, Mumtaz MM, Latendresse JR, Mehendale HM. Adaptive tolerance in mice upon subchronic exposure to chloroform: Increased exhalation and target tissue regeneration. Toxicol Appol Pharmacol 213: 267–281, 2006.

    Article  CAS  Google Scholar 

  65. Anand SS, Soni MG, Vaidya VS, Murthy SN, Mumtaz MM, Mehendale HM. Extent and timeliness of tissue repair determines the dose-related hepatotoxicity of chloroform. Int J Toxicol 22: 25–33, 2003.

    Article  CAS  PubMed  Google Scholar 

  66. Qin LQ, Wang Y, Xu JY, Kaneko T, Sato A, Wang PY. One-day dietary restriction changes hepatic metabolism and potentiates the hepatotoxicity of carbon tetrachloride and chloroform in rats. Tohoku J Exp Med 212: 379–387, 2007.

    Article  CAS  PubMed  Google Scholar 

  67. Philip BK, Anand SS, Palkar PS, Mumtaz MM, Latendresse JR, Mehendale HM. Subchronic chloroform priming protects mice from a subsequently administered lethal dose of choloroform. Toxicol Appl Pharmacol 216: 108–121, 2006.

    Article  CAS  PubMed  Google Scholar 

  68. Begay CK, Gandolfi AJ. Late administration of COX-2 inhibitors minimize hepatic necrosis in chloroform-induced liver injury. Toxicology 185: 79–87, 2003.

    Article  CAS  PubMed  Google Scholar 

  69. Nango K, Kano H, Arito H, Yamamoto S, Matshshima T. Enhancement of renal carcinogenicity by combined inhalation and oral exposures to chloroform in male rats. J Toxicol Environ Health A 69: 1827–1842, 2006.

    Article  Google Scholar 

  70. Fang C, Behr M, Xie F, Lu S, Doret M, Luo H, Yang W, Aldous K, Ding X, Gu J. Mechanism of chloroform-induced renal toxicity: non-involvement of hepatic cytochrome P450-dependent metabolism. Toxicol Appl Pharmacol 227: 48–55, 2008.

    Article  CAS  PubMed  Google Scholar 

  71. Gemma S, Vittozzi L, Testai E. Metabolism of chloroform in the human liver and identification of the competent P450s. Drug Metab Dispos 31: 266–274, 2003.

    Article  CAS  PubMed  Google Scholar 

  72. Lim GE, Stals SI, Petrik JJ, Foster WG, Holloway AC. The effects of in utero and lactational exposure to chloroform on postnatal growth and glucose tolerance in male Wistar rats. Endocrine 25: 223–228, 2004.

    Article  CAS  PubMed  Google Scholar 

  73. Meek ME, Beauchamp R, Long G, Moir D, Turner L, Walker M. Chloroform: exposure estimation, hazard characterization, and exposure-response analysis. J Toxicol Environ Health B Crit Rev 5: 283–334, 2006.

    Article  Google Scholar 

  74. Liao KH, Tan YM, Conolly RB, Borghoff SJ, Gargas ML, Andersen ME, Clewell HJ 3rd. Bayesian estimation of pharmacokinetic and pharmacodynamic parameters in a mode-of-action-based cancer risk assessment of chloroform. Risk Anal 27: 1535–1551, 2007.

    Article  PubMed  Google Scholar 

  75. Tan YM, Liao KH, Conolly RB, Blount BC, Mason AM, Clewell HJ. Use of a physiologically based pharmacokinetic model to identify exposures consistent with human biomonitoring data for chloroform. J Toxicol Environ Health A 64: 1727–1756, 2006.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Weisburger, E.K. (2010). Chemical Carcinogenesis Role of Chloroform – Further Studies. In: Coppola, D. (eds) Mechanisms of Oncogenesis. Cancer Growth and Progression, vol 12. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3725-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-90-481-3725-1_4

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-3724-4

  • Online ISBN: 978-90-481-3725-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics