Skip to main content

Genesis of Pancreatic Ductal Neoplasia

  • Chapter
  • First Online:
Mechanisms of Oncogenesis

Part of the book series: Cancer Growth and Progression ((CAGP,volume 12))

  • 859 Accesses

Abstract

Pancreatic cancer is the fourth overall leading cause of cancer death in both genders, even though it is not among the most frequent. Early detection and targeted therapeutic options, which can be obtained through a better understanding of the cellular and molecular processes which lead to the development of pancreatic carcinoma, are key to improving the outcome of this highly lethal disease. The progress which has been achieved the last two decades towards understanding the mechanisms involved in pancreatic cancer progression has lead to the development of a progression model. Mouse models of pancreatic cancer underscore the significance of the progression model. This chapter highlights the key accomplishments in understanding pancreatic cancer progression over the last two decades.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Health NCINIo. In: Sheet SSF, editor. Surveillance, Epidemiology and End Results: 2008.

    Google Scholar 

  2. Cancer Prevention & Early Detection Facts & Figures 2008. In: American Cancer Society: 2008.

    Google Scholar 

  3. Lowenfels AB, Maisonneuve P. Risk factors for pancreatic cancer. J Cell Biochem 2005;95(4):649–56.

    Google Scholar 

  4. Gold EB, Goldin SB. Epidemiology of and risk factors for pancreatic cancer. Surg Oncol Clin N Am 1998;7(1):67–91.

    CAS  PubMed  Google Scholar 

  5. Villeneuve PJ, Johnson KC, Mao Y, Hanley AJ. Environmental tobacco smoke and the risk of pancreatic cancer: findings from a Canadian population-based case-control study. Can J Public Health 2004;95(1):32–7.

    PubMed  Google Scholar 

  6. Boffetta P, Hecht S, Gray N, Gupta P, Straif K. Smokeless tobacco and cancer. Lancet Oncol 2008;9(7):667–75.

    Article  PubMed  Google Scholar 

  7. Hassan MM, Abbruzzese JL, Bondy ML, Wolff RA, Vauthey JN, Pisters PW, et al. Passive smoking and the use of noncigarette tobacco products in association with risk for pancreatic cancer: a case-control study. Cancer 2007;109(12):2547–56.

    Article  PubMed  Google Scholar 

  8. Luo J, Margolis KL, Adami HO, LaCroix A, Ye W. Obesity and risk of pancreatic cancer among postmenopausal women: the Women’s Health Initiative (United States). Br J Cancer 2008;99(3):527–31.

    Article  CAS  PubMed  Google Scholar 

  9. Stolzenberg-Solomon RZ, Adams K, Leitzmann M, Schairer C, Michaud DS, Hollenbeck A, et al. Adiposity, physical activity, and pancreatic cancer in the National Institutes of Health-AARP Diet and Health Cohort. Am J Epidemiol 2008;167(5):586–97.

    Article  PubMed  Google Scholar 

  10. Reeves GK, Pirie K, Beral V, Green J, Spencer E, Bull D. Cancer incidence and mortality in relation to body mass index in the Million Women Study: cohort study. BMJ 2007;335(7630);1134.

    Article  PubMed  Google Scholar 

  11. Berrington de Gonzalez A, Sweetland S, Spencer E. A meta-analysis of obesity and the risk of pancreatic cancer. Br J Cancer 2003;89(3):519–23.

    Article  CAS  PubMed  Google Scholar 

  12. Michaud DS, Skinner HG, Wu K, Hu F, Giovannucci E, Willett WC, et al. Dietary patterns and pancreatic cancer risk in men and women. J Natl Cancer Inst 2005;97(7):518–24.

    Article  PubMed  Google Scholar 

  13. Stolzenberg-Solomon RZ, Cross AJ, Silverman DT, Schairer C, Thompson FE, Kipnis V, et al. Meat and meat-mutagen intake and pancreatic cancer risk in the NIH-AARP cohort. Cancer Epidemiol Biomarkers Prev 2007;16(12):2664–75.

    Article  CAS  PubMed  Google Scholar 

  14. Permuth-Wey J, Egan KM. Family history is a significant risk factor for pancreatic cancer: results from a systematic review and meta- analysis. Fam Cancer 2009;8:109–17.

    Google Scholar 

  15. Klein AP, Beaty TH, Bailey-Wilson JE, Brune KA, Hruban RH, Petersen GM. Evidence for a major gene influencing risk of pancreatic cancer. Genet Epidemiol 2002;23(2):133–49.

    Article  PubMed  Google Scholar 

  16. Rulyak SJ, Brentnall TA. Inherited pancreatic cancer: improvements in our understanding of genetics and screening. Int J Biochem Cell Biol 2004;36(8):1386–92.

    Article  CAS  PubMed  Google Scholar 

  17. Grocock CJ, Vitone LJ, Harcus MJ, Neoptolemos JP, Raraty MG, Greenhalf W. Familial pancreatic cancer: a review and latest advances. Adv Med Sci 2007;52:37–49.

    CAS  PubMed  Google Scholar 

  18. Del Chiaro M, Zerbi A, Falconi M, Bertacca L, Polese M, Sartori N, et al. Cancer risk among the relatives of patients with pancreatic ductal adenocarcinoma. Pancreatology 2007;7(5–6):459–69.

    Article  PubMed  Google Scholar 

  19. Swift M, Chase CL, Morrell D. Cancer predisposition of ataxia- telangiectasia heterozygotes. Cancer Genet Cytogenet 1990;46(1):21–7.

    Article  CAS  PubMed  Google Scholar 

  20. Geoffroy-Perez B, Janin N, Ossian K, Lauge A, Croquette MF, Griscelli C, et al. Cancer risk in heterozygotes for ataxia- telangiectasia. Int J Cancer 2001;93(2):288–93.

    Article  CAS  PubMed  Google Scholar 

  21. Lynch HT, Voorhees GJ, Lanspa SJ, McGreevy PS, Lynch JF. Pancreatic carcinoma and hereditary nonpolyposis colorectal cancer: a family study. Br J Cancer 1985;52(2):271–3.

    CAS  PubMed  Google Scholar 

  22. Goldstein AM, Fraser MC, Struewing JP, Hussussian CJ, Ranade K, Zametkin DP, et al. Increased risk of pancreatic cancer in melanoma- prone kindreds with p16INK4 mutations. N Engl J Med 1995;333(15): 970–4.

    Article  CAS  PubMed  Google Scholar 

  23. Su GH, Hruban RH, Bansal RK, Bova GS, Tang DJ, Shekher MC, et al. Germline and somatic mutations of the STK11/LKB1 Peutz-Jeghers gene in pancreatic and biliary cancers. Am J Pathol 1999;154(6):1835–40.

    CAS  PubMed  Google Scholar 

  24. Goggins M, Schutte M, Lu J, Moskaluk CA, Weinstein CL, Petersen GM, et al. Germline BRCA2 gene mutations in patients with apparently sporadic pancreatic carcinomas. Cancer Res 1996;56(23): 5360–4.

    CAS  PubMed  Google Scholar 

  25. Lowenfels AB, Maisonneuve P, DiMagno EP, Elitsur Y, Gates LK, Jr., Perrault J, et al. Hereditary pancreatitis and the risk of pancreatic cancer. International Hereditary Pancreatitis Study Group. J Natl Cancer Inst 1997;89(6):442–6.

    Article  CAS  PubMed  Google Scholar 

  26. Whitcomb DC, Gorry MC, Preston RA, Furey W, Sossenheimer MJ, Ulrich CD, et al. Hereditary pancreatitis is caused by a mutation in the cationic trypsinogen gene. Nat Genet 1996;14(2):141–5.

    Article  CAS  PubMed  Google Scholar 

  27. Al-Sukhni W, Rothenmund H, Borgida AE, Zogopoulos G, O’Shea AM, Pollett A, et al. Germline BRCA1 mutations predispose to pancreatic adenocarcinoma. Hum Genet 2008;124(3):271–8.

    Article  CAS  PubMed  Google Scholar 

  28. Hruban RH, Petersen GM, Ha PK, Kern SE. Genetics of pancreatic cancer. From genes to families. Surg Oncol Clin N Am 1998;7(1):1–23.

    CAS  PubMed  Google Scholar 

  29. Hruban RH, Adsay NV, Albores-Saavedra J, Compton C, Garrett ES, Goodman SN, et al. Pancreatic intraepithelial neoplasia: a new nomenclature and classification system for pancreatic duct lesions. Am J Surg Pathol 2001;25(5):579–86.

    Article  CAS  PubMed  Google Scholar 

  30. Hruban RH, Wilentz RE, Kern SE. Genetic progression in the pancreatic ducts. Am J Pathol 2000;156(6):1821–5.

    CAS  PubMed  Google Scholar 

  31. Maitra A, Fukushima N, Takaori K, Hruban RH. Precursors to invasive pancreatic cancer. Adv Anat Pathol 2005;12(2):81–91.

    Article  PubMed  Google Scholar 

  32. van Heek NT, Meeker AK, Kern SE, Yeo CJ, Lillemoe KD, Cameron JL, et al. Telomere shortening is nearly universal in pancreatic intraepithelial neoplasia. Am J Pathol 2002;161(5):1541–7.

    PubMed  Google Scholar 

  33. Schutte M, Hruban RH, Geradts J, Maynard R, Hilgers W, Rabindran SK, et al. Abrogation of the Rb/p16 tumor-suppressive pathway in virtually all pancreatic carcinomas. Cancer Res 1997;57(15):3126–30.

    CAS  PubMed  Google Scholar 

  34. Maitra A, Kern SE, Hruban RH. Molecular pathogenesis of pancreatic cancer. Best Pract Res Clin Gastroenterol 2006;20(2):211–26.

    Article  CAS  PubMed  Google Scholar 

  35. Wilentz RE, Geradts J, Maynard R, Offerhaus GJ, Kang M, Goggins M, et al. Inactivation of the p16 (INK4A) tumor-suppressor gene in pancreatic duct lesions: loss of intranuclear expression. Cancer Res 1998;58(20):4740–4.

    CAS  PubMed  Google Scholar 

  36. Redston MS, Caldas C, Seymour AB, Hruban RH, da Costa L, Yeo CJ, et al. p53 mutations in pancreatic carcinoma and evidence of common involvement of homocopolymer tracts in DNA microdeletions. Cancer Res 1994;54(11):3025–33.

    CAS  PubMed  Google Scholar 

  37. Maitra A, Adsay NV, Argani P, Iacobuzio-Donahue C, De Marzo A, Cameron JL, et al. Multicomponent analysis of the pancreatic adenocarcinoma progression model using a pancreatic intraepithelial neoplasia tissue microarray. Mod Pathol 2003;16(9): 902–12.

    Article  PubMed  Google Scholar 

  38. Wilentz RE, Iacobuzio-Donahue CA, Argani P, McCarthy DM, Parsons JL, Yeo CJ, et al. Loss of expression of Dpc4 in pancreatic intraepithelial neoplasia: evidence that DPC4 inactivation occurs late in neoplastic progression. Cancer Res 2000;60(7):2002–6.

    CAS  PubMed  Google Scholar 

  39. Goggins M, Shekher M, Turnacioglu K, Yeo CJ, Hruban RH, Kern SE. Genetic alterations of the transforming growth factor beta receptor genes in pancreatic and biliary adenocarcinomas. Cancer Res 1998;58(23): 5329–32.

    CAS  PubMed  Google Scholar 

  40. Hempen PM, Zhang L, Bansal RK, Iacobuzio-Donahue CA, Murphy KM, Maitra A, et al. Evidence of selection for clones having genetic inactivation of the activin A type II receptor (ACVR2) gene in gastrointestinal cancers. Cancer Res 2003;63(5):994–9.

    CAS  PubMed  Google Scholar 

  41. Su GH, Bansal R, Murphy KM, Montgomery E, Yeo CJ, Hruban RH, et al. ACVR1B (ALK4, activin receptor type 1B) gene mutations in pancreatic carcinoma. Proc Natl Acad Sci USA 2001;98(6):3254–7.

    Article  CAS  PubMed  Google Scholar 

  42. Giardiello FM, Brensinger JD, Tersmette AC, Goodman SN, Petersen GM, Booker SV, et al. Very high risk of cancer in familial Peutz- Jeghers syndrome. Gastroenterology 2000;119(6):1447–53.

    Article  CAS  PubMed  Google Scholar 

  43. Su GH, Hilgers W, Shekher MC, Tang DJ, Yeo CJ, Hruban RH, et al. Alterations in pancreatic, biliary, and breast carcinomas support MKK4 as a genetically targeted tumor suppressor gene. Cancer Res 1998;58(11):2339–42.

    CAS  PubMed  Google Scholar 

  44. Gayther SA, Batley SJ, Linger L, Bannister A, Thorpe K, Chin SF, et al. Mutations truncating the EP300 acetylase in human cancers. Nat Genet 2000;24(3):300–3.

    Article  CAS  PubMed  Google Scholar 

  45. Calhoun ES, Jones JB, Ashfaq R, Adsay V, Baker SJ, Valentine V, et al. BRAF and FBXW7 (CDC4, FBW7, AGO, SEL10) mutations in distinct subsets of pancreatic cancer: potential therapeutic targets. Am J Pathol 2003;163(4):1255–60.

    CAS  PubMed  Google Scholar 

  46. Almoguera C, Shibata D, Forrester K, Martin J, Arnheim N, Perucho M. Most human carcinomas of the exocrine pancreas contain mutant c-K-ras genes. Cell 1988;53(4):549–54.

    Article  CAS  PubMed  Google Scholar 

  47. Lohr M, Kloppel G, Maisonneuve P, Lowenfels AB, Luttges J. Frequency of K-ras mutations in pancreatic intraductal neoplasias associated with pancreatic ductal adenocarcinoma and chronic pancreatitis: a meta-analysis. Neoplasia 2005;7(1):17–23.

    Article  PubMed  Google Scholar 

  48. Ozcelik H, Schmocker B, Di Nicola N, Shi XH, Langer B, Moore M, et al. Germline BRCA2 6174delT mutations in Ashkenazi Jewish pancreatic cancer patients. Nat Genet 1997;16(1):17–8.

    Article  CAS  PubMed  Google Scholar 

  49. Goggins M, Hruban RH, Kern SE. BRCA2 is inactivated late in the development of pancreatic intraepithelial neoplasia: evidence and implications. Am J Pathol 2000;156(5):1767–71.

    CAS  PubMed  Google Scholar 

  50. Howlett NG, Taniguchi T, Olson S, Cox B, Waisfisz Q, De Die- Smulders C, et al. Biallelic inactivation of BRCA2 in Fanconi anemia. Science 2002;297(5581):606–9.

    Article  CAS  PubMed  Google Scholar 

  51. van der Heijden MS, Yeo CJ, Hruban RH, Kern SE. Fanconi anemia gene mutations in young-onset pancreatic cancer. Cancer Res 2003;63(10):2585–8.

    PubMed  Google Scholar 

  52. van der Heijden MS, Brody JR, Gallmeier E, Cunningham SC, Dezentje DA, Shen D, et al. Functional defects in the fanconi anemia pathway in pancreatic cancer cells. Am J Pathol 2004;165(2):651–7.

    PubMed  Google Scholar 

  53. Day JD, Digiuseppe JA, Yeo C, Lai-Goldman M, Anderson SM, Goodman SN, et al. Immunohistochemical evaluation of HER-2/neu expression in pancreatic adenocarcinoma and pancreatic intraepithelial neoplasms. Hum Pathol 1996;27(2):119–24.

    Article  CAS  PubMed  Google Scholar 

  54. Sato N, Goggins M. The role of epigenetic alterations in pancreatic cancer. J Hepatobiliary Pancreat Surg 2006;13(4):286–95.

    Article  PubMed  Google Scholar 

  55. Sato N, Fukushima N, Maehara N, Matsubayashi H, Koopmann J, Su GH, et al. SPARC/osteonectin is a frequent target for aberrant methylation in pancreatic adenocarcinoma and a mediator of tumor- stromal interactions. Oncogene 2003;22(32):5021–30.

    Article  CAS  PubMed  Google Scholar 

  56. Ueki T, Toyota M, Skinner H, Walter KM, Yeo CJ, Issa JP, et al. Identification and characterization of differentially methylated CpG islands in pancreatic carcinoma. Cancer Res 2001;61(23):8540–6.

    CAS  PubMed  Google Scholar 

  57. Fukushima N, Sato N, Ueki T, Rosty C, Walter KM, Wilentz RE, et al. Aberrant methylation of preproenkephalin and p16 genes in pancreatic intraepithelial neoplasia and pancreatic ductal adenocarcinoma. Am J Pathol 2002;160(5):1573–81.

    CAS  PubMed  Google Scholar 

  58. Sato N, Ueki T, Fukushima N, Iacobuzio-Donahue CA, Yeo CJ, Cameron JL, et al. Aberrant methylation of CpG islands in intraductal papillary mucinous neoplasms of the pancreas. Gastroenterology 2002;123(1):365–72.

    Article  CAS  PubMed  Google Scholar 

  59. Rosty C, Ueki T, Argani P, Jansen M, Yeo CJ, Cameron JL, et al. Overexpression of S100A4 in pancreatic ductal adenocarcinomas is associated with poor differentiation and DNA hypomethylation. Am J Pathol 2002;160(1):45–50.

    CAS  PubMed  Google Scholar 

  60. Sato N, Maitra A, Fukushima N, van Heek NT, Matsubayashi H, Iacobuzio-Donahue CA, et al. Frequent hypomethylation of multiple genes overexpressed in pancreatic ductal adenocarcinoma. Cancer Res 2003;63(14):4158–66.

    CAS  PubMed  Google Scholar 

  61. Jones S, Zhang X, Parsons DW, Lin JC, Leary RJ, Angenendt P, et al. Core signaling pathways in human pancreatic cancers revealed by global genomic analyses. Science 2008;321(5897):1801–6.

    Article  CAS  PubMed  Google Scholar 

  62. Thayer SP, di Magliano MP, Heiser PW, Nielsen CM, Roberts DJ, Lauwers GY, et al. Hedgehog is an early and late mediator of pancreatic cancer tumorigenesis. Nature 2003;425(6960):851–6.

    Article  CAS  PubMed  Google Scholar 

  63. Miyamoto Y, Maitra A, Ghosh B, Zechner U, Argani P, Iacobuzio- Donahue CA, et al. Notch mediates TGF alpha-induced changes in epithelial differentiation during pancreatic tumorigenesis. Cancer Cell 2003;3(6):565–76.

    Article  CAS  PubMed  Google Scholar 

  64. Xu XF, Xie CG, Wang XP, Liu J, Yu YC, Hu HL, et al. Selective inhibition of cyclooxygenase-2 suppresses the growth of pancreatic cancer cells in vitro and in vivo. Tohoku J Exp Med 2008;215(2):149–57.

    Article  CAS  PubMed  Google Scholar 

  65. Funahashi H, Satake M, Dawson D, Huynh NA, Reber HA, Hines OJ, et al. Delayed progression of pancreatic intraepithelial neoplasia in a conditional Kras(G12D) mouse model by a selective cyclooxygenase- 2 inhibitor. Cancer Res 2007;67(15):7068–71.

    Article  CAS  PubMed  Google Scholar 

  66. Tseng WW, Deganutti A, Chen MN, Saxton RE, Liu CD. Selective cyclooxygenase-2 inhibitor rofecoxib (Vioxx) induces expression of cell cycle arrest genes and slows tumor growth in human pancreatic cancer. J Gastrointest Surg 2002;6(6):838–43; discussion 844.

    Article  PubMed  Google Scholar 

  67. Fukushima H, Yamamoto H, Itoh F, Nakamura H, Min Y, Horiuchi S, et al. Association of matrilysin mRNA expression with K-ras mutations and progression in pancreatic ductal adenocarcinomas. Carcinogenesis 2001;22(7):1049–52.

    Article  CAS  PubMed  Google Scholar 

  68. Vargo-Gogola T, Crawford HC, Fingleton B, Matrisian LM. Identification of novel matrix metalloproteinase-7 (matrilysin) cleavage sites in murine and human Fas ligand. Arch Biochem Biophys 2002;408(2):155–61.

    Article  CAS  PubMed  Google Scholar 

  69. Shiomi T, Okada Y. MT1-MMP and MMP-7 in invasion and metastasis of human cancers. Cancer Metastasis Rev 2003;22(2–3):145–52.

    Article  CAS  PubMed  Google Scholar 

  70. Moniaux N, Andrianifahanana M, Brand RE, Batra SK. Multiple roles of mucins in pancreatic cancer, a lethal and challenging malignancy. Br J Cancer 2004;91(9):1633–8.

    CAS  PubMed  Google Scholar 

  71. Klein WM, Hruban RH, Klein-Szanto AJ, Wilentz RE. Direct correlation between proliferative activity and dysplasia in pancreatic intraepithelial neoplasia (PanIN): additional evidence for a recently proposed model of progression. Mod Pathol 2002;15(4):441–7.

    Article  PubMed  Google Scholar 

  72. Biankin AV, Kench JG, Morey AL, Lee CS, Biankin SA, Head DR, et al. Overexpression of p21(WAF1/CIP1) is an early event in the development of pancreatic intraepithelial neoplasia. Cancer Res 2001;61(24):8830–7.

    CAS  PubMed  Google Scholar 

  73. Argani P, Iacobuzio-Donahue C, Ryu B, Rosty C, Goggins M, Wilentz RE, et al. Mesothelin is overexpressed in the vast majority of ductal adenocarcinomas of the pancreas: identification of a new pancreatic cancer marker by serial analysis of gene expression (SAGE). Clin Cancer Res 2001;7(12):3862–8.

    CAS  PubMed  Google Scholar 

  74. Crnogorac-Jurcevic T, Missiaglia E, Blaveri E, Gangeswaran R, Jones M, Terris B, et al. Molecular alterations in pancreatic carcinoma: expression profiling shows that dysregulated expression of S100 genes is highly prevalent. J Pathol 2003;201(1):63–74.

    Article  CAS  PubMed  Google Scholar 

  75. Zhang Y, Li M, Wang H, Fisher WE, Lin PH, Yao Q, Chen C. Profiling of 95 microRNAs in pancreatic cancer cell lines and surgical specimens by real-time PCR analysis. World J Surg 2009;33:698–709.

    Google Scholar 

  76. Lee EJ, Gusev Y, Jiang J, Nuovo GJ, Lerner MR, Frankel WL, et al. Expression profiling identifies microRNA signature in pancreatic cancer. Int J Cancer 2007;120(5):1046–54.

    Article  CAS  PubMed  Google Scholar 

  77. Chang TC, Wentzel EA, Kent OA, Ramachandran K, Mullendore M, Lee KH, et al. Transactivation of miR-34a by p53 broadly influences gene expression and promotes apoptosis. Mol Cell 2007;26(5):745–52.

    Article  CAS  PubMed  Google Scholar 

  78. Feldmann G, Beaty R, Hruban RH, Maitra A. Molecular genetics of pancreatic intraepithelial neoplasia. J Hepatobiliary Pancreat Surg 2007;14(3):224–32.

    Article  PubMed  Google Scholar 

  79. Heinmoller E, Dietmaier W, Zirngibl H, Heinmoller P, Scaringe W, Jauch KW, et al. Molecular analysis of microdissected tumors and preneoplastic intraductal lesions in pancreatic carcinoma. Am J Pathol 2000;157(1):83–92.

    CAS  PubMed  Google Scholar 

  80. Aguirre AJ, Bardeesy N, Sinha M, Lopez L, Tuveson DA, Horner J, et al. Activated Kras and Ink4a/Arf deficiency cooperate to produce metastatic pancreatic ductal adenocarcinoma. Genes Dev 2003;17(24):3112–26.

    Article  CAS  PubMed  Google Scholar 

  81. Hruban RH, Adsay NV, Albores-Saavedra J, Anver MR, Biankin AV, Boivin GP, et al. Pathology of genetically engineered mouse models of pancreatic exocrine cancer: consensus report and recommendations. Cancer Res 2006;66(1):95–106.

    Article  CAS  PubMed  Google Scholar 

  82. Hingorani SR, Petricoin EF, Maitra A, Rajapakse V, King C, Jacobetz MA, et al. Preinvasive and invasive ductal pancreatic cancer and its early detection in the mouse. Cancer Cell 2003;4(6):437–50.

    Article  CAS  PubMed  Google Scholar 

  83. Brembeck FH, Schreiber FS, Deramaudt TB, Craig L, Rhoades B, Swain G, et al. The mutant K-ras oncogene causes pancreatic periductal lymphocytic infiltration and gastric mucous neck cell hyperplasia in transgenic mice. Cancer Res 2003;63(9):2005–9.

    CAS  PubMed  Google Scholar 

  84. Li C, Heidt DG, Dalerba P, Burant CF, Zhang L, Adsay V, et al. Identification of pancreatic cancer stem cells. Cancer Res 2007;67(3):1030–7.

    Article  CAS  PubMed  Google Scholar 

  85. Leach SD. Epithelial differentiation in pancreatic development and neoplasia: new niches for nestin and Notch. J Clin Gastroenterol 2005;39(4 Suppl 2):S78–82.

    Article  PubMed  Google Scholar 

  86. Jensen JN, Cameron E, Garay MV, Starkey TW, Gianani R, Jensen J. Recapitulation of elements of embryonic development in adult mouse pancreatic regeneration. Gastroenterology 2005;128(3):728–41.

    Article  CAS  PubMed  Google Scholar 

  87. Means AL, Meszoely IM, Suzuki K, Miyamoto Y, Rustgi AK, Coffey RJ, Jr., et al. Pancreatic epithelial plasticity mediated by acinar cell transdifferentiation and generation of nestin-positive intermediates. Development 2005;132(16):3767–76.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barbara A. Centeno .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Centeno, B.A., Springett, G.M. (2010). Genesis of Pancreatic Ductal Neoplasia. In: Coppola, D. (eds) Mechanisms of Oncogenesis. Cancer Growth and Progression, vol 12. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3725-1_16

Download citation

  • DOI: https://doi.org/10.1007/978-90-481-3725-1_16

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-3724-4

  • Online ISBN: 978-90-481-3725-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics