Skip to main content

Molecular Mechanisms of Central Nervous System Metastasis

  • Chapter
  • First Online:
Mechanisms of Oncogenesis

Part of the book series: Cancer Growth and Progression ((CAGP,volume 12))

  • 873 Accesses

Abstract

Brain metastasis occurs in a significant number of patients with systemic malignancies and despite a wide range of therapeutic interventions, morbidity and mortality remain high. The mechanisms that impact metastases to the CNS remain unclear. The migratory and invasive properties of the individual primary tumor are directly related to its metastatic potential and malignant cells must manifest these properties in order to attain a more aggressive, and therefore more invasive phenotype. The acquisition of such properties permits migration and invasion through the basement membrane and interaction with the extracellular matrix. Although invasion into the lymphatics and/or vasculature followed by eventual extravasation is the primary physical modality that facilitates metastases from the primary site to distant anatomic sites, it is at the molecular level that expression of critical proteins is altered, effecting pathways within the cell that allow enhanced migration and invasion Many of the molecules and pathways are involved in several different steps of metastasis and often influence multiple pathophysiologic components such as growth, proliferation, angiogenesis, apoptosis and migration. Many of these actions occur concurrently, and frequently are interdependent. This chapter presents a brief overview of some of the molecular mechanisms implicated in the metastatic process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Prados M, Wilson C. Neoplasms of the central nervous system. In: Holland J, RC Bast J, Kufe D, Morton D, Weichselbaum R, editors. Cancer Medicine. 3rd ed. Philadelphia, PA: Lea & Febiger; 1993, pp. 1080–119.

    Google Scholar 

  2. Sawaya R, Ligon BL, Bindal AK, Bindal RK, Hess KR. Surgical treatment of metastatic brain tumors. J Neurooncol. 1996 Mar;27(3):269–77.

    Article  PubMed  CAS  Google Scholar 

  3. Sawaya R, Ligon BL, Bindal RK. Management of metastatic brain tumors. Ann Surg Oncol. 1994 Mar;1(2):169–78.

    Article  PubMed  CAS  Google Scholar 

  4. Duband JL, Monier F, Delannet M, Newgreen D. Epithelium-mesenchyme transition during neural crest development. Acta Anat (Basel). 1995;154(1):63–78.

    Article  CAS  Google Scholar 

  5. Thiery JP, Sleeman JP. Complex networks orchestrate epithelial-mesenchymal transitions. Nat Rev Mol Cell Biol. 2006 Feb;7(2):131–42.

    Article  PubMed  CAS  Google Scholar 

  6. Huber MA, Azoitei N, Baumann B, Grunert S, Sommer A, Pehamberger H, et al. NF-kappaB is essential for epithelial-mesenchymal transition and metastasis in a model of breast cancer progression. J Clin Invest. 2004 Aug;114(4):569–81.

    PubMed  CAS  Google Scholar 

  7. Thompson EW, Paik S, Brunner N, Sommers CL, Zugmaier G, Clarke R, et al. Association of increased basement membrane invasiveness with absence of estrogen receptor and expression of vimentin in human breast cancer cell lines. J Cell Physiol. 1992 Mar;150(3):534–44.

    Article  PubMed  CAS  Google Scholar 

  8. Thompson EW, Torri J, Sabol M, Sommers CL, Byers S, Valverius EM, et al. Oncogene-induced basement membrane invasiveness in human mammary epithelial cells. Clin Exp Metastasis. 1994 May;12(3):181–94.

    Article  PubMed  CAS  Google Scholar 

  9. Black PM. Brain tumor. Part 2. N Engl J Med. 1991 May 30;324(22):1555–64.

    Article  CAS  Google Scholar 

  10. Black PM. Brain tumors. Part 1. N Engl J Med. 1991 May 23;324(21):1471–6.

    Article  CAS  Google Scholar 

  11. Schouten LJ, Rutten J, Huveneers HA, Twijnstra A. Incidence of brain metastases in a cohort of patients with carcinoma of the breast, colon, kidney, and lung and melanoma. Cancer. 2002 May 15;94(10):2698–705.

    Article  PubMed  Google Scholar 

  12. Aukerman SL, Price JE, Fidler IJ. Different deficiencies in the prevention of tumorigenic-low-metastatic murine K-1735b melanoma cells from producing metastases. J Natl Cancer Inst. 1986 Oct;77(4):915–24.

    PubMed  CAS  Google Scholar 

  13. Fidler IJ. The relationship of embolic homogeneity, number, size and viability to the incidence of experimental metastasis. Eur J Cancer. 1973 Mar;9(3):223–7.

    PubMed  CAS  Google Scholar 

  14. Fidler IJ. Critical determinants of metastasis. Semin Cancer Biol. 2002 Apr;12(2):89–96.

    Article  PubMed  Google Scholar 

  15. Price JE, Aukerman SL, Fidler IJ. Evidence that the process of murine melanoma metastasis is sequential and selective and contains stochastic elements. Cancer Res. 1986 Oct;46(10):5172–8.

    PubMed  CAS  Google Scholar 

  16. Fujimaki T, Price JE, Fan D, Bucana CD, Itoh K, Kirino T, et al. Selective growth of human melanoma cells in the brain parenchyma of nude mice. Melanoma Res. 1996 Oct;6(5):363–71.

    Article  PubMed  CAS  Google Scholar 

  17. Nicolson GL, Menter DG, Herrmann JL, Yun Z, Cavanaugh P, Marchetti D. Brain metastasis: role of trophic, autocrine, and paracrine factors in tumor invasion and colonization of the central nervous system. Curr Top Microbiol Immunol. 1996;213 (Pt 2):89–115.

    PubMed  CAS  Google Scholar 

  18. Schackert G, Fidler IJ. Site-specific metastasis of mouse melanomas and a fibrosarcoma in the brain or meninges of syngeneic animals. Cancer Res. 1988 Jun 15;48(12):3478–84.

    PubMed  CAS  Google Scholar 

  19. Schackert G, Fidler IJ. Development of in vivo models for studies of brain metastasis. Int J Cancer. 1988 Apr 15;41(4):589–94.

    Article  PubMed  CAS  Google Scholar 

  20. Schackert G, Simmons RD, Buzbee TM, Hume DA, Fidler IJ. Macrophage infiltration into experimental brain metastases: occurrence through an intact blood-brain barrier. J Natl Cancer Inst. 1988 Sept 7;80(13):1027–34.

    Article  PubMed  CAS  Google Scholar 

  21. Glaves D. Correlation between circulating cancer cells and incidence of metastases. Br J Cancer. 1983 Nov;48(5):665–73.

    PubMed  CAS  Google Scholar 

  22. Liotta LA, Saidel MG, Kleinerman J. The significance of hematogenous tumor cell clumps in the metastatic process. Cancer Res. 1976 Mar;36(3):889–94.

    PubMed  CAS  Google Scholar 

  23. Liotta LA, Steeg PS, Stetler-Stevenson WG. Cancer metastasis and angiogenesis: an imbalance of positive and negative regulation. Cell. 1991 Jan 25;64(2):327–36.

    Article  PubMed  CAS  Google Scholar 

  24. Vlems FA, Ruers TJ, Punt CJ, Wobbes T, van Muijen GN. Relevance of disseminated tumour cells in blood and bone marrow of patients with solid epithelial tumours in perspective. Eur J Surg Oncol. 2003 May;29(4): 289–302.

    Article  PubMed  CAS  Google Scholar 

  25. Hooper JE, Scott MP. Communicating with Hedgehogs. Nat Rev Mol Cell Biol. 2005 Apr;6(4):306–17

    Article  PubMed  CAS  Google Scholar 

  26. Ingham PW, McMahon AP. Hedgehog signaling in animal development: paradigms and principles. Genes Dev. 2001 Dec 1;15(23):3059–87.

    Article  PubMed  CAS  Google Scholar 

  27. McMahon AP, Ingham PW, Tabin CJ. Developmental roles and clinical significance of hedgehog signaling. Curr Top Dev Biol. 2003;53:1–114.

    Article  PubMed  CAS  Google Scholar 

  28. Pasca di Magliano M, Hebrok M. Hedgehog signalling in cancer formation and maintenance. Nat Rev Cancer. 2003 Dec;3(12):903–11.

    Article  PubMed  Google Scholar 

  29. Asai J, Takenaka H, Kusano KF, Ii M, Luedemann C, Curry C, et al. Topical sonic hedgehog gene therapy accelerates wound healing in diabetes by enhancing endothelial progenitor cell-mediated microvascular remodeling. Circulation. 2006 May 23;113(20):2413–24.

    Article  PubMed  CAS  Google Scholar 

  30. Gering M, Patient R. Hedgehog signaling is required for adult blood stem cell formation in zebrafish embryos. Dev Cell. 2005 Mar;8(3):389–400.

    Article  PubMed  CAS  Google Scholar 

  31. Vokes SA, Yatskievych TA, Heimark RL, McMahon J, McMahon AP, Antin PB, et al. Hedgehog signaling is essential for endothelial tube formation during vasculogenesis. Development. 2004 Sept;131(17):4371–80.

    Article  PubMed  CAS  Google Scholar 

  32. Bale AE, Yu KP. The hedgehog pathway and basal cell carcinomas. Hum Mol Genet. 2001 Apr;10(7):757–62.

    Article  PubMed  CAS  Google Scholar 

  33. Ingham PW. Hedgehog signalling. Curr Biol. 2008 Mar 25;18(6):R238–41.

    Article  PubMed  CAS  Google Scholar 

  34. Beachy PA, Karhadkar SS, Berman DM. Tissue repair and stem cell renewal in carcinogenesis. Nature. 2004 Nov 18;432(7015):324–31.

    Article  PubMed  CAS  Google Scholar 

  35. Chen JK, Taipale J, Cooper MK, Beachy PA. Inhibition of Hedgehog signaling by direct binding of cyclopamine to Smoothened. Genes Dev. 2002 Nov 1;16(21):2743–8.

    Article  PubMed  CAS  Google Scholar 

  36. Chen JK, Taipale J, Young KE, Maiti T, Beachy PA. Small molecule modulation of Smoothened activity. Proc Natl Acad Sci USA. 2002 Oct 29;99(22):14071–6.

    Article  PubMed  CAS  Google Scholar 

  37. Karhadkar SS, Bova GS, Abdallah N, Dhara S, Gardner D, Maitra A, et al. Hedgehog signalling in prostate regeneration, neoplasia and metastasis. Nature. 2004 Oct 7;431(7009):707–12.

    Article  PubMed  CAS  Google Scholar 

  38. Pola R, Ling LE, Aprahamian TR, Barban E, Bosch-Marce M, Curry C, et al. Postnatal recapitulation of embryonic hedgehog pathway in response to skeletal muscle ischemia. Circulation. 2003 Jul 29;108(4):479–85.

    Article  PubMed  Google Scholar 

  39. Hochman E, Castiel A, Jacob-Hirsch J, Amariglio N, Izraeli S. Molecular pathways regulating pro-migratory effects of Hedgehog signaling. J Biol Chem. 2006 Nov 10;281(45):33860–70.

    Article  PubMed  CAS  Google Scholar 

  40. Yoo YA, Kang MH, Kim JS, Oh SC. Sonic hedgehog signaling promotes motility and invasiveness of gastric cancer cells through TGF-beta-mediated activation of the ALK5-Smad 3 pathway. Carcinogenesis. 2008 Mar;29(3):480–90.

    Article  PubMed  CAS  Google Scholar 

  41. Feldmann G, Dhara S, Fendrich V, Bedja D, Beaty R, Mullendore M, et al. Blockade of hedgehog signaling inhibits pancreatic cancer invasion and metastases: a new paradigm for combination therapy in solid cancers. Cancer Res. 2007 Mar 1;67(5):2187–96.

    Article  PubMed  CAS  Google Scholar 

  42. Mori Y, Okumura T, Tsunoda S, Sakai Y, Shimada Y. Gli-1 expression is associated with lymph node metastasis and tumor progression in esophageal squamous cell carcinoma. Oncology. 2006;70(5):378–89.

    Article  PubMed  CAS  Google Scholar 

  43. Leivonen SK, Ala-Aho R, Koli K, Grenman R, Peltonen J, Kahari VM. Activation of Smad signaling enhances collagenase-3 (MMP-13) expression and invasion of head and neck squamous carcinoma cells. Oncogene. 2006 Apr 27;25(18):2588–600.

    Article  PubMed  CAS  Google Scholar 

  44. Leivonen SK, Kahari VM. Transforming growth factor-beta signaling in cancer invasion and metastasis. Int J Cancer. 2007 Nov 15;121(10):2119–24.

    Article  PubMed  CAS  Google Scholar 

  45. Zavadil J, Bottinger EP. TGF-beta and epithelial-to-mesenchymal transitions. Oncogene. 2005 Aug 29;24(37):5764–74.

    Article  PubMed  CAS  Google Scholar 

  46. Bertolino P, Deckers M, Lebrin F, ten Dijke P. Transforming growth factor-beta signal transduction in angiogenesis and vascular disorders. Chest. 2005 Dec; 128(6 Suppl.): 585S–90S.

    Article  PubMed  CAS  Google Scholar 

  47. Massague J. TGF-beta signal transduction. Annu Rev Biochem. 1998;67:753–91.

    Article  PubMed  CAS  Google Scholar 

  48. Massague J, Seoane J, Wotton D. Smad transcription factors. Genes Dev. 2005 Dec 1;19(23):2783–810.

    Article  PubMed  CAS  Google Scholar 

  49. Massague J, Wotton D. Transcriptional control by the TGF-beta/Smad signaling system. EMBO J. 2000 Apr 17;19(8):1745–54.

    Article  PubMed  CAS  Google Scholar 

  50. Shi Y, Massague J. Mechanisms of TGF-beta signaling from cell membrane to the nucleus. Cell. 2003 Jun 13;113(6):685–700.

    Article  PubMed  CAS  Google Scholar 

  51. Bottinger EP, Jakubczak JL, Haines DC, Bagnall K, Wakefield LM. Transgenic mice overexpressing a dominant-negative mutant type II transforming growth factor beta receptor show enhanced tumorigenesis in the mammary gland and lung in response to the carcinogen 7,12-dimethylbenz-[a]-anthracene. Cancer Res. 1997 Dec 15;57(24):5564–70.

    PubMed  CAS  Google Scholar 

  52. Gorska AE, Jensen RA, Shyr Y, Aakre ME, Bhowmick NA, Moses HL. Transgenic mice expressing a dominant-negative mutant type II transforming growth factor-beta receptor exhibit impaired mammary development and enhanced mammary tumor formation. Am J Pathol. 2003 Oct;163(4):1539–49.

    PubMed  CAS  Google Scholar 

  53. Pierce DF, Jr., Gorska AE, Chytil A, Meise KS, Page DL, Coffey RJ, Jr., et al. Mammary tumor suppression by transforming growth factor beta 1 transgene expression. Proc Natl Acad Sci USA. 1995 May 9;92(10):4254–8.

    Article  PubMed  CAS  Google Scholar 

  54. Dumont N, Arteaga CL. Transforming growth factor-beta and breast cancer: tumor promoting effects of transforming growth factor-beta. Breast Cancer Res. 2000;2(2):125–32.

    Article  PubMed  CAS  Google Scholar 

  55. Dumont N, Bakin AV, Arteaga CL. Autocrine transforming growth factor-beta signaling mediates Smad-independent motility in human cancer cells. J Biol Chem. 2003 Jan 31;278(5):3275–85.

    Article  PubMed  CAS  Google Scholar 

  56. Safina A, Vandette E, Bakin AV. ALK5 promotes tumor angiogenesis by upregulating matrix metalloproteinase-9 in tumor cells. Oncogene. 2007 Apr 12;26(17):2407–22.

    Article  PubMed  CAS  Google Scholar 

  57. Bellail AC, Hunter SB, Brat DJ, Tan C, Van Meir EG. Microregional extracellular matrix heterogeneity in brain modulates glioma cell invasion. Int J Biochem Cell Biol. 2004 Jun;36(6):1046–69.

    Article  PubMed  CAS  Google Scholar 

  58. Guo P, Imanishi Y, Cackowski FC, Jarzynka MJ, Tao HQ, Nishikawa R, et al. Up-regulation of angiopoietin-2, matrix metalloprotease-2, membrane type 1 metalloprotease, and laminin 5 gamma 2 correlates with the invasiveness of human glioma. Am J Pathol. 2005 Mar;166(3):877–90.

    PubMed  CAS  Google Scholar 

  59. Hood JD, Cheresh DA. Role of integrins in cell invasion and migration. Nat Rev Cancer. 2002 Feb;2(2):91–100.

    Article  PubMed  Google Scholar 

  60. Park MJ, Park IC, Hur JH, Kim MS, Lee HC, Woo SH, et al. Modulation of phorbol ester-induced regulation of matrix metalloproteinases and tissue inhibitors of metalloproteinases by SB203580, a specific inhibitor of p38 mitogen-activated protein kinase. J Neurosurg. 2002 Jul;97(1):112–8.

    Article  PubMed  CAS  Google Scholar 

  61. Derynck R, Zhang YE. Smad-dependent and Smad-independent pathways in TGF-beta family signalling. Nature. 2003 Oct 9;425(6958):577–84.

    Article  PubMed  CAS  Google Scholar 

  62. Muraoka RS, Koh Y, Roebuck LR, Sanders ME, Brantley-Sieders D, Gorska AE, et al. Increased malignancy of Neu-induced mammary tumors overexpressing active transforming growth factor beta1. Mol Cell Biol. 2003 Dec;23(23):8691–703.

    Article  PubMed  CAS  Google Scholar 

  63. Muraoka-Cook RS, Shin I, Yi JY, Easterly E, Barcellos-Hoff MH, Yingling JM, et al. Activated type I TGFbeta receptor kinase enhances the survival of mammary epithelial cells and accelerates tumor progression. Oncogene. 2006 Jun 8;25(24):3408–23.

    Article  PubMed  CAS  Google Scholar 

  64. Wakefield LM, Roberts AB. TGF-beta signaling: positive and negative effects on tumorigenesis. Curr Opin Genet Dev. 2002 Feb;12(1):22–9.

    Article  PubMed  CAS  Google Scholar 

  65. Wang KS, Hu ZL, Li JH, Xiao DS, Wen JF. Enhancement of metastatic and invasive capacity of gastric cancer cells by transforming growth factor-beta1. Acta Biochim Biophys Sin (Shanghai). 2006 Mar;38(3):179–86.

    Article  CAS  Google Scholar 

  66. Etoh T, Inoue H, Tanaka S, Barnard GF, Kitano S, Mori M. Angiopoietin-2 is related to tumor angiogenesis in gastric carcinoma: possible in vivo regulation via induction of proteases. Cancer Res. 2001 Mar 1;61(5):2145–53.

    PubMed  CAS  Google Scholar 

  67. Koga K, Todaka T, Morioka M, Hamada J, Kai Y, Yano S, et al. Expression of angiopoietin-2 in human glioma cells and its role for angiogenesis. Cancer Res. 2001 Aug 15;61(16):6248–54.

    PubMed  CAS  Google Scholar 

  68. Lind AJ, Wikstrom P, Granfors T, Egevad L, Stattin P, Bergh A. Angiopoietin 2 expression is related to histological grade, vascular density, metastases, and outcome in prostate cancer. Prostate. 2005 Mar 1;62(4):394–9.

    Article  PubMed  CAS  Google Scholar 

  69. Ochiumi T, Tanaka S, Oka S, Hiyama T, Ito M, Kitadai Y, et al. Clinical significance of angiopoietin-2 expression at the deepest invasive tumor site of advanced colorectal carcinoma. Int J Oncol. 2004 Mar;24(3):539–47.

    PubMed  CAS  Google Scholar 

  70. Sfiligoi C, de Luca A, Cascone I, Sorbello V, Fuso L, Ponzone R, et al. Angiopoietin-2 expression in breast cancer correlates with lymph node invasion and short survival. Int J Cancer. 2003 Feb 10;103(4):466–74.

    Article  PubMed  CAS  Google Scholar 

  71. Yancopoulos GD, Davis S, Gale NW, Rudge JS, Wiegand SJ, Holash J. Vascular-specific growth factors and blood vessel formation. Nature. 2000 Sept 14;407(6801):242–8.

    Article  PubMed  CAS  Google Scholar 

  72. Camenisch G, Pisabarro MT, Sherman D, Kowalski J, Nagel M, Hass P, et al. ANGPTL3 stimulates endothelial cell adhesion and migration via integrin alpha vbeta 3 and induces blood vessel formation in vivo. J Biol Chem. 2002 May 10;277(19):17281–90.

    Article  PubMed  CAS  Google Scholar 

  73. Hynes RO. Integrins: bidirectional, allosteric signaling machines. Cell. 2002 Sept 20;110(6):673–87.

    Article  PubMed  CAS  Google Scholar 

  74. Yokoyama K, Erickson HP, Ikeda Y, Takada Y. Identification of amino acid sequences in fibrinogen gamma-chain and tenascin C C-terminal domains critical for binding to integrin alpha vbeta 3. J Biol Chem. 2000 Jun 2;275(22):16891–8.

    Article  PubMed  CAS  Google Scholar 

  75. Brakebusch C, Bouvard D, Stanchi F, Sakai T, Fassler R. Integrins in invasive growth. J Clin Invest. 2002 Apr;109(8):999–1006.

    PubMed  CAS  Google Scholar 

  76. Carlson TR, Feng Y, Maisonpierre PC, Mrksich M, Morla AO. Direct cell adhesion to the angiopoietins mediated by integrins. J Biol Chem. 2001 Jul 13;276(28):26516–25.

    Article  PubMed  CAS  Google Scholar 

  77. Cascone I, Napione L, Maniero F, Serini G, Bussolino F. Stable interaction between alpha5beta1 integrin and Tie2 tyrosine kinase receptor regulates endothelial cell response to Ang-1. J Cell Biol. 2005 Sept 12;170(6): 993–1004.

    Article  PubMed  CAS  Google Scholar 

  78. Dallabrida SM, Ismail N, Oberle JR, Himes BE, Rupnick MA. Angiopoietin-1 promotes cardiac and skeletal myocyte survival through integrins. Circ Res. 2005 Mar 4;96(4):e8–24.

    Article  PubMed  CAS  Google Scholar 

  79. Hu B, Jarzynka MJ, Guo P, Imanishi Y, Schlaepfer DD, Cheng SY. Angiopoietin 2 induces glioma cell invasion by stimulating matrix metalloprotease 2 expression through the alphavbeta1 integrin and focal adhesion kinase signaling pathway. Cancer Res. 2006 Jan 15;66(2):775–83.

    Article  PubMed  CAS  Google Scholar 

  80. Hsia DA, Mitra SK, Hauck CR, Streblow DN, Nelson JA, Ilic D, et al. Differential regulation of cell motility and invasion by FAK. J Cell Biol. 2003 Mar 3;160(5):753–67.

    Article  PubMed  CAS  Google Scholar 

  81. Kramer RH, McDonald KA, Crowley E, Ramos DM, Damsky CH. Melanoma cell adhesion to basement membrane mediated by integrin-related complexes. Cancer Res. 1989 Jan 15;49(2):393–402.

    PubMed  CAS  Google Scholar 

  82. Kurata H, Thant AA, Matsuo S, Senga T, Okazaki K, Hotta N, et al. Constitutive activation of MAP kinase kinase (MEK1) is critical and sufficient for the activation of MMP-2. Exp Cell Res. 2000 Jan 10;254(1):180–8.

    Article  PubMed  CAS  Google Scholar 

  83. Mitra SK, Hanson DA, Schlaepfer DD. Focal adhesion kinase: in command and control of cell motility. Nat Rev Mol Cell Biol. 2005 Jan;6(1):56–68.

    Article  PubMed  CAS  Google Scholar 

  84. Zhang Y, Thant AA, Hiraiwa Y, Naito Y, Sein TT, Sohara Y, et al. A role for focal adhesion kinase in hyluronan-dependent MMP-2 secretion in a human small-cell lung carcinoma cell line, QG90. Biochem Biophys Res Commun. 2002 Jan 25;290(3):1123–7.

    Article  PubMed  CAS  Google Scholar 

  85. Hutchings H, Ortega N, Plouet J. Extracellular matrix-bound vascular endothelial growth factor promotes endothelial cell adhesion, migration, and survival through integrin ligation. FASEB J. 2003 Aug;17(11):1520–2.

    PubMed  CAS  Google Scholar 

  86. Sternlicht MD, Werb Z. How matrix metalloproteinases regulate cell behavior. Annu Rev Cell Dev Biol. 2001;17:463–516.

    Article  PubMed  CAS  Google Scholar 

  87. Baker AH, Edwards DR, Murphy G. Metalloproteinase inhibitors: biological actions and therapeutic opportunities. J Cell Sci. 2002 Oct 1;115(Pt 19):3719–27.

    Article  PubMed  CAS  Google Scholar 

  88. Coussens LM, Fingleton B, Matrisian LM. Matrix metalloproteinase inhibitors and cancer: trials and tribulations. Science. 2002 Mar 29;295(5564):2387–92.

    Article  PubMed  CAS  Google Scholar 

  89. Nguyen M, Arkell J, Jackson CJ. Human endothelial gelatinases and angiogenesis. Int J Biochem Cell Biol. 2001 Oct;33(10):960–70.

    Article  PubMed  CAS  Google Scholar 

  90. Schultz RM, Silberman S, Persky B, Bajkowski AS, Carmichael DF. Inhibition by human recombinant tissue inhibitor of metalloproteinases of human amnion invasion and lung colonization by murine B16-F10 melanoma cells. Cancer Res. 1988 Oct 1;48(19):5539–45.

    PubMed  CAS  Google Scholar 

  91. Hayakawa T, Yamashita K, Tanzawa K, Uchijima E, Iwata K. Growth-promoting activity of tissue inhibitor of metalloproteinases-1 (TIMP-1) for a wide range of cells. A possible new growth factor in serum. FEBS Lett. 1992 Feb 17;298(1):29–32.

    CAS  Google Scholar 

  92. Fong KM, Kida Y, Zimmerman PV, Smith PJ. TIMP1 and adverse prognosis in non-small cell lung cancer. Clin Cancer Res. 1996 Aug;2(8):1369–72.

    PubMed  CAS  Google Scholar 

  93. McCarthy K, Maguire T, McGreal G, McDermott E, O’Higgins N, Duffy MJ. High levels of tissue inhibitor of metalloproteinase-1 predict poor outcome in patients with breast cancer. Int J Cancer. 1999 Feb 19;84(1):44–8.

    Article  PubMed  CAS  Google Scholar 

  94. Zeng ZS, Cohen AM, Zhang ZF, Stetler-Stevenson W, Guillem JG. Elevated tissue inhibitor of metalloproteinase 1 RNA in colorectal cancer stroma correlates with lymph node and distant metastases. Clin Cancer Res. 1995 Aug;1(8):899–906.

    PubMed  CAS  Google Scholar 

  95. Watnick RS, Cheng YN, Rangerajan A, Ince TA, Weinberg RA. Ras modulates Myc activity to repress thrombospondin-1 expression and increase tumor angiogenesis. Cancer Cell. 2003. Mar;3(3):219–31.

    Google Scholar 

  96. Algire G. The Biology of Melanomas. New York: New York Academy of Sciences; 1947.

    Google Scholar 

  97. Folkman J. What is the evidence that tumors are angiogenesis dependent? J Natl Cancer Inst. 1990 Jan 3;82(1):4–6.

    Article  PubMed  CAS  Google Scholar 

  98. Folkman J. The influence of angiogenesis research on management of patients with breast cancer. Breast Cancer Res Treat. 1995;36(2):109–18.

    Article  PubMed  CAS  Google Scholar 

  99. Hanahan D, Folkman J. Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell. 1996 Aug 9;86(3):353–64.

    Article  PubMed  CAS  Google Scholar 

  100. Harris AL. Anti-angiogenesis therapy and strategies for integrating it with adjuvant therapy. Recent Results Cancer Res. 1998;152:341–52.

    PubMed  CAS  Google Scholar 

  101. Risau W. Mechanisms of angiogenesis. Nature. 1997 Apr 17;386(6626):671–4.

    Article  PubMed  CAS  Google Scholar 

  102. Cheng SY, Nagane M, Huang HS, Cavenee WK. Intracerebral tumor-associated hemorrhage caused by overexpression of the vascular endothelial growth factor isoforms VEGF121 and VEGF165 but not VEGF189. Proc Natl Acad Sci USA. 1997 Oct 28;94(22):12081–7.

    Article  PubMed  CAS  Google Scholar 

  103. Claffey KP, Brown LF, del Aguila LF, Tognazzi K, Yeo KT, Manseau EJ, et al. Expression of vascular permeability factor/vascular endothelial growth factor by melanoma cells increases tumor growth, angiogenesis, and experimental metastasis. Cancer Res. 1996 Jan 1;56(1):172–81.

    PubMed  CAS  Google Scholar 

  104. Ferrara N. Vascular endothelial growth factor and the regulation of angiogenesis. Recent Prog Horm Res. 2000;55:15–35; discussion 6.

    PubMed  CAS  Google Scholar 

  105. Ferrara N. VEGF and the quest for tumour angiogenesis factors. Nat Rev Cancer. 2002 Oct;2(10):795–803.

    Article  PubMed  CAS  Google Scholar 

  106. Oku T, Tjuvajev JG, Miyagawa T, Sasajima T, Joshi A, Joshi R, et al. Tumor growth modulation by sense and antisense vascular endothelial growth factor gene expression: effects on angiogenesis, vascular permeability, blood volume, blood flow, fluorodeoxyglucose uptake, and proliferation of human melanoma intracerebral xenografts. Cancer Res. 1998 Sept 15;58(18):4185–92.

    PubMed  CAS  Google Scholar 

  107. Weidner N. New paradigm for vessel intravasation by tumor cells. Am J Pathol. 2002 Jun;160(6):1937–9.

    PubMed  Google Scholar 

  108. Weidner N, Folkman J. Tumoral vascularity as a prognostic factor in cancer. Important Adv Oncol. 1996: 167–90.

    Google Scholar 

  109. Hasan J, Byers R, Jayson GC. Intra-tumoural microvessel density in human solid tumours. Br J Cancer. 2002 May 20;86(10):1566–77.

    Article  PubMed  CAS  Google Scholar 

  110. Weidner N. Tumoural vascularity as a prognostic factor in cancer patients: the evidence continues to grow. J Pathol. 1998 Feb;184(2):119–22.

    Article  PubMed  CAS  Google Scholar 

  111. Ellis LM, Fidler IJ. Angiogenesis and metastasis. Eur J Cancer. 1996 Dec; 32A(14):2451–60.

    Article  PubMed  CAS  Google Scholar 

  112. Al-Mehdi AB, Tozawa K, Fisher AB, Shientag L, Lee A, Muschel RJ. Intravascular origin of metastasis from the proliferation of endothelium-attached tumor cells: a new model for metastasis. Nat Med. 2000 Jan;6(1):100–2.

    Article  PubMed  CAS  Google Scholar 

  113. Auguste P, Lemiere S, Larrieu-Lahargue F, Bikfalvi A. Molecular mechanisms of tumor vascularization. Crit Rev Oncol Hematol. 2005 Apr;54(1):53–61.

    Article  PubMed  Google Scholar 

  114. Kim ES, Serur A, Huang J, Manley CA, McCrudden KW, Frischer JS, et al. Potent VEGF blockade causes regression of coopted vessels in a model of neuroblastoma. Proc Natl Acad Sci USA. 2002 Aug 20;99(17): 11399–404.

    Article  PubMed  CAS  Google Scholar 

  115. Kusters B, Leenders WP, Wesseling P, Smits D, Verrijp K, Ruiter DJ, et al. Vascular endothelial growth factor-A(165) induces progression of melanoma brain metastases without induction of sprouting angiogenesis. Cancer Res. 2002 Jan 15;62(2):341–5.

    PubMed  CAS  Google Scholar 

  116. Leenders WP, Kusters B, de Waal RM. Vessel co-option: how tumors obtain blood supply in the absence of sprouting angiogenesis. Endothelium. 2002;9(2):83–7.

    Article  PubMed  Google Scholar 

  117. Leenders WP, Kusters B, Verrijp K, Maass C, Wesseling P, Heerschap A, et al. Antiangiogenic therapy of cerebral melanoma metastases results in sustained tumor progression via vessel co-option. Clin Cancer Res. 2004 Sept 15;10(18 Pt 1):6222–30.

    Article  PubMed  CAS  Google Scholar 

  118. Neves S, Mazal PR, Wanschitz J, Rudnay AC, Drlicek M, Czech T, et al. Pseudogliomatous growth pattern of anaplastic small cell carcinomas metastatic to the brain. Clin Neuropathol. 2001 Jan–Feb;20(1):38–42.

    PubMed  CAS  Google Scholar 

  119. Pezzella F, Pastorino U, Tagliabue E, Andreola S, Sozzi G, Gasparini G, et al. Non-small-cell lung carcinoma tumor growth without morphological evidence of neo-angiogenesis. Am J Pathol. 1997 Nov;151(5):1417–23.

    PubMed  CAS  Google Scholar 

  120. Vermeulen PB, Colpaert C, Salgado R, Royers R, Hellemans H, Van Den Heuvel E, et al. Liver metastases from colorectal adenocarcinomas grow in three patterns with different angiogenesis and desmoplasia. J Pathol. 2001 Oct;195(3):336–42.

    Article  PubMed  CAS  Google Scholar 

  121. Kusters B, Kats G, Roodink I, Verrijp K, Wesseling P, Ruiter DJ, et al. Micronodular transformation as a novel mechanism of VEGF-A-induced metastasis. Oncogene. 2007 Aug 23;26(39):5808–15.

    Article  PubMed  CAS  Google Scholar 

  122. Ruiter DJ, van Krieken JH, van Muijen GN, de Waal RM. Tumour metastasis: is tissue an issue? Lancet Oncol. 2001 Feb;2(2):109–12.

    Article  PubMed  CAS  Google Scholar 

  123. Sugino T, Kusakabe T, Hoshi N, Yamaguchi T, Kawaguchi T, Goodison S, et al. An invasion-independent pathway of blood-borne metastasis: a new murine mammary tumor model. Am J Pathol. 2002 Jun;160(6):1973–80.

    PubMed  CAS  Google Scholar 

  124. Yano S, Shinohara H, Herbst RS, Kuniyasu H, Bucana CD, Ellis LM, et al. Expression of vascular endothelial growth factor is necessary but not sufficient for production and growth of brain metastasis. Cancer Res. 2000 Sept 1;60(17):4959–67.

    PubMed  CAS  Google Scholar 

  125. LaRochelle WJ, Jeffers M, Corvalan JR, Jia XC, Feng X, Vanegas S, et al. Platelet-derived growth factor D: tumorigenicity in mice and dysregulated expression in human cancer. Cancer Res. 2002 May 1;62(9):2468–73.

    PubMed  CAS  Google Scholar 

  126. Folkman J, Shing Y. Angiogenesis. J Biol Chem. 1992 Jun 5;267(16):10931–4.

    PubMed  CAS  Google Scholar 

  127. Onodera H, Nagayama S, Tachibana T, Fujimoto A, Imamura M. Brain metastasis from colorectal cancer. Int J Colorectal Dis. 2005 Jan;20(1):57–61.

    Article  PubMed  Google Scholar 

  128. Bartsch U. Neural CAMS and their role in the development and organization of myelin sheaths. Front Biosci. 2003 Jan 1;8:477–90.

    Article  Google Scholar 

  129. Farinola MA, Weir EG, Ali SZ. CD56 expression of neuroendocrine neoplasms on immunophenotyping by flow cytometry: a novel diagnostic approach to fine-needle aspiration biopsy. Cancer. 2003 Aug 25;99(4):240–6.

    Article  PubMed  CAS  Google Scholar 

  130. Sytnyk V, Leshchyns’ka I, Delling M, Dityateva G, Dityatev A, Schachner M. Neural cell adhesion molecule promotes accumulation of TGN organelles at sites of neuron-to-neuron contacts. J Cell Biol. 2002 Nov 25;159(4):649–61.

    Article  PubMed  CAS  Google Scholar 

  131. Marchetti D, Aucoin R, Blust J, Murry B, Greiter-Wilke A. p75 neurotrophin receptor functions as a survival receptor in brain-metastatic melanoma cells. J Cell Biochem. 2004 Jan 1;91(1):206–15.

    Article  PubMed  CAS  Google Scholar 

  132. Menter DG, Herrmann JL, Marchetti D, Nicolson GL. Involvement of neurotrophins and growth factors in brain metastasis formation. Invasion Metastasis. 1994; 14(1–6):372–84.

    PubMed  CAS  Google Scholar 

  133. Barbacid M. Nerve growth factor: a tale of two receptors. Oncogene. 1993 Aug;8(8):2033–42.

    PubMed  CAS  Google Scholar 

  134. Bibel M, Barde YA. Neurotrophins: key regulators of cell fate and cell shape in the vertebrate nervous system. Genes Dev. 2000 Dec 1;14(23):2919–37.

    Article  PubMed  CAS  Google Scholar 

  135. Chao MV. Neurotrophins and their receptors: a convergence point for many signalling pathways. Nat Rev Neurosci. 2003 Apr;4(4):299–309.

    Article  PubMed  CAS  Google Scholar 

  136. Chao MV, Bothwell M. Neurotrophins: to cleave or not to cleave. Neuron. 2002 Jan 3;33(1):9–12.

    Article  PubMed  CAS  Google Scholar 

  137. Kaplan DR, Miller FD. Neurotrophin signal transduction in the nervous system. Curr Opin Neurobiol. 2000 Jun;10(3):381–91.

    Article  PubMed  CAS  Google Scholar 

  138. Marchetti D, Menter D, Jin L, Nakajima M, Nicolson GL. Nerve growth factor effects on human and mouse melanoma cell invasion and heparanase production. Int J Cancer. 1993 Oct 21;55(4):692–9.

    Article  PubMed  CAS  Google Scholar 

  139. Marchetti D, Nicolson GL. Human heparanase: a molecular determinant of brain metastasis. Adv Enzyme Regul. 2001;41:343–59.

    Article  PubMed  CAS  Google Scholar 

  140. Marchetti D, Parikh N, Sudol M, Gallick GE. Stimulation of the protein tyrosine kinase c-Yes but not c-Src by neurotrophins in human brain-metastatic melanoma cells. Oncogene. 1998 Jun 25;16(25):3253–60.

    Article  PubMed  CAS  Google Scholar 

  141. Ree AH, Bratland A, Kroes RA, Aasheim HC, Florenes VA, Moskal JR, et al. Clinical and cell line specific expression profiles of a human gene identified in experimental central nervous system metastases. Anticancer Res. 2002 Jul–Aug;22(4):1949–57.

    PubMed  Google Scholar 

  142. Jafri NF, Ma PC, Maulik G, Salgia R. Mechanisms of metastasis as related to receptor tyrosine kinases in small-cell lung cancer. J Environ Pathol Toxicol Oncol. 2003;22(3):147–65.

    Article  PubMed  CAS  Google Scholar 

  143. Resnick DK, Resnick NM, Welch WC, Cooper DL. Differential expressions of CD44 variants in tumors affecting the central nervous system. Mol Diagn. 1999 Sept;4(3):219–32.

    Article  PubMed  CAS  Google Scholar 

  144. Ariza A, Lopez D, Mate JL, Isamat M, Musulen E, Pujol M, et al. Role of CD44 in the invasiveness of glioblastoma multiforme and the noninvasiveness of meningioma: an immunohistochemistry study. Hum Pathol. 1995 Oct;26(10):1144–7.

    Article  PubMed  CAS  Google Scholar 

  145. Gerlach R, Scheuer T, Bohm M, Beck J, Woszczyk A, Raabe A, et al. Increased levels of plasma tissue factor pathway inhibitor in patients with glioblastoma and intracerebral metastases. Neurol Res. 2003 Jun;25(4):335–8.

    Article  PubMed  CAS  Google Scholar 

  146. Narla G, DiFeo A, Fernandez Y, Dhanasekaran S, Huang F, Sangodkar J, et al. KLF6-SV1 overexpression accelerates human and mouse prostate cancer progression and metastasis. J Clin Invest. 2008 Aug;118(8):2711–21.

    Article  PubMed  CAS  Google Scholar 

  147. Lee EJ, Whang JH, Jeon NK, Kim J. The epidermal growth factor receptor tyrosine kinase inhibitor ZD1839 (Iressa) suppresses proliferation and invasion of human oral squamous carcinoma cells via p53 independent and MMP, uPAR dependent mechanism. Ann NY Acad Sci. 2007 Jan;1095:113–28.

    Article  PubMed  CAS  Google Scholar 

  148. Lee Y, Vassilakos A, Feng N, Lam V, Xie H, Wang M, et al. GTI-2040, an antisense agent targeting the small subunit component (R2) of human ribonucleotide reductase, shows potent antitumor activity against a variety of tumors. Cancer Res. 2003 Jun 1;63(11):2802–11.

    PubMed  CAS  Google Scholar 

  149. Mayoral MA, Mayoral C, Meneses A, Villalvazo L, Guzman A, Espinosa B, et al. Identification of galectin-3 and mucin-type O-glycans in breast cancer and its metastasis to brain. Cancer Invest. 2008 Jul;26(6):615–23.

    Article  PubMed  CAS  Google Scholar 

  150. Holmgren L, O’Reilly MS, Folkman J. Dormancy of micrometastases: balanced proliferation and apoptosis in the presence of angiogenesis suppression. Nat Med. 1995 Feb;1(2):149–53.

    Article  PubMed  CAS  Google Scholar 

  151. Murray C. Tumour dormancy: not so sleepy after all. Nat Med. 1995 Feb;1(2):117–8.

    Article  PubMed  CAS  Google Scholar 

  152. Crowley NJ, Seigler HF. Relationship between disease-free interval and survival in patients with recurrent melanoma. Arch Surg. 1992 Nov;127(11):1303–8.

    PubMed  CAS  Google Scholar 

  153. Demicheli R, Abbattista A, Miceli R, Valagussa P, Bonadonna G. Time distribution of the recurrence risk for breast cancer patients undergoing mastectomy: further support about the concept of tumor dormancy. Breast Cancer Res Treat. 1996;41(2):177–85.

    Article  PubMed  CAS  Google Scholar 

  154. Demicheli R, Retsky MW, Hrushesky WJ, Baum M, Gukas ID. The effects of surgery on tumor growth: a century of investigations. Ann Oncol. 2008 Nov;19(11):1821–8.

    Article  PubMed  CAS  Google Scholar 

  155. Demicheli R, Terenziani M, Valagussa P, Moliterni A, Zambetti M, Bonadonna G. Local recurrences following mastectomy: support for the concept of tumor dormancy. J Natl Cancer Inst. 1994 Jan 5;86(1):45–8.

    Article  PubMed  CAS  Google Scholar 

  156. Fujii Y, Fukui I, Kihara K, Tsujii T, Kageyama Y, Oshima H. Late recurrence and progression after a long tumor-free period in primary Ta and T1 bladder cancer. Eur Urol. 1999 Oct;36(4):309–13.

    Article  PubMed  CAS  Google Scholar 

  157. Karrison TG, Ferguson DJ, Meier P. Dormancy of mammary carcinoma after mastectomy. J Natl Cancer Inst. 1999 Jan 6;91(1):80–5.

    Article  PubMed  CAS  Google Scholar 

  158. Meltzer A. Dormancy and breast cancer. J Surg Oncol. 1990 Mar;43(3):181–8.

    Article  PubMed  CAS  Google Scholar 

  159. Stewart TH, Hollinshead AC, Raman S. Tumour dormancy: initiation, maintenance and termination in animals and humans. Can J Surg. 1991 Aug;34(4):321–5.

    PubMed  CAS  Google Scholar 

  160. O’Reilly MS, Holmgren L, Shing Y, Chen C, Rosenthal RA, Cao Y, et al. Angiostatin: a circulating endothelial cell inhibitor that suppresses angiogenesis and tumor growth. Cold Spring Harb Symp Quant Biol. 1994;59:471–82.

    PubMed  Google Scholar 

  161. O’Reilly MS, Holmgren L, Shing Y, Chen C, Rosenthal RA, Moses M, et al. Angiostatin: a novel angiogenesis inhibitor that mediates the suppression of metastases by a Lewis lung carcinoma. Cell. 1994 Oct 21;79(2):315–28.

    Article  PubMed  Google Scholar 

  162. Kirsch M, Schackert G, Black PM. Metastasis and angiogenesis. Cancer Treat Res. 2004;117:285–304.

    PubMed  CAS  Google Scholar 

  163. Kirsch M, Strasser J, Allende R, Bello L, Zhang J, Black PM. Angiostatin suppresses malignant glioma growth in vivo. Cancer Res. 1998 Oct 15;58(20):4654–9.

    PubMed  CAS  Google Scholar 

  164. O’Reilly MS, Boehm T, Shing Y, Fukai N, Vasios G, Lane WS, et al. Endostatin: an endogenous inhibitor of angiogenesis and tumor growth. Cell. 1997 Jan 24;88(2): 277–85.

    Article  PubMed  Google Scholar 

  165. Dhanabal M, Ramchandran R, Waterman MJ, Lu H, Knebelmann B, Segal M, et al. Endostatin induces endothelial cell apoptosis. J Biol Chem. 1999 Apr 23;274(17):11721–6.

    Article  PubMed  CAS  Google Scholar 

  166. Dhanabal M, Volk R, Ramchandran R, Simons M, Sukhatme VP. Cloning, expression, and in vitro activity of human endostatin. Biochem Biophys Res Commun. 1999 May 10;258(2):345–52.

    Article  PubMed  CAS  Google Scholar 

  167. O’Reilly MS, Holmgren L, Chen C, Folkman J. Angiostatin induces and sustains dormancy of human primary tumors in mice. Nat Med. 1996 Jun;2(6):689–92.

    Article  PubMed  Google Scholar 

  168. Yamaguchi N, Anand-Apte B, Lee M, Sasaki T, Fukai N, Shapiro R, et al. Endostatin inhibits VEGF-induced endothelial cell migration and tumor growth independently of zinc binding. EMBO J. 1999 Aug 16;18(16):4414–23.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amyn M. Rojiani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Riddle, N.D., Rojiani, M.V., Brem, S., Rojiani, A.M. (2010). Molecular Mechanisms of Central Nervous System Metastasis. In: Coppola, D. (eds) Mechanisms of Oncogenesis. Cancer Growth and Progression, vol 12. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3725-1_11

Download citation

  • DOI: https://doi.org/10.1007/978-90-481-3725-1_11

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-3724-4

  • Online ISBN: 978-90-481-3725-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics