Skip to main content

Ecology and Adaptation of Legumes Crops

  • Chapter
  • First Online:
Climate Change and Management of Cool Season Grain Legume Crops

Abstract

In this work we present and discuss some of the advances reached in relation to environmental crop management and adaptation to warming climates of legume crops, frequently associated to plant breeding, towards drought tolerance. At the same time, the benefits related to the contribution to the development of an appropriate legumes-based agriculture for arid zones are analyzed. The Leguminosae and Gramineae families are by far the world’s most important sources of food. Legumes include beans, soybeans, peas, alfalfa, and other crops, which supply protein fats, fiber and wood. Through their root nodules, inhabited by Rhizobium bacteria, the legumes also improve the nitrogen balance in the soil. Legumes comprise one of the largest plant families in the world, with near 18,000 species. Most species are tropical and include trees, woody vines, and herbaceous plants. All legume plants bear pods or legumes, which are diversely modified within the family. Most have compound leaves. As regards to warming climates under the effects of climate change, drought is defined as any period during which water deficits in the plant or agroecosystem affect growth and development; in this sense, the duration of drought determines the quantity of damage caused to crops. Two reasons are analyzed to develop programs of breeding and management directed to drought tolerance by means of an environmental understanding and ecophysiological selection of plants, according to their interactions with the environment: The first one is to maximize the productivity and consistently the plant performance, stabilizing or increasing productivity. The second one is to improve the drought tolerance; under this consideration the mechanisms of water conservation, constitute for the plants an important option to survive a drought, although they tend to limit their productive potential. It is concluded that an appropriate ecological management of crops and the ecophysiological selection can constitute a feasible way for agricultural sustainability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • M. Becker, J.K. Ladha, and M. Ali (1995). Green manure technology: Potential, usage, and limitations. A case study for lowland rice. Plant Soil 174(1–2), 181–194.

    Article  CAS  Google Scholar 

  • F.A. Beltrán-Morales, J.L. García-Hernández, R.D. Valdez-Cepeda, B. Murillo-Amador, E. Troyo-Diéguez, J.Á. Larrinaga-Mayoral, and L.F. Beltrán-Morales (2006). Efecto de sistemas de labranza e incorporación deabono verde (Lablab purpureus L.) sobre la respiraciónedáfica en un yermosol háplico. Interciencia 31(3), 226–230.

    Google Scholar 

  • M. Blanco, C. Corrales, O. Chevez, and A. Campos (1995). El crecimiento y rendimiento del frijol común (Phaseolus vulgaris L.) como cultivo intercalado con café. (Coffea arabica L.). Agron Mesoamericana 6, 134–139.

    Google Scholar 

  • B.B. Bohlool, J.K. Ladha, D.P. Garrity, and T. George (1992). Biological nitrogen fixation for sustainable agriculture: A perspective. Plant Soil 141(1–2), 1–11.

    Article  CAS  Google Scholar 

  • B. Bosworth and S.M. Collins (2008). Accounting for growth: Comparing China and India. J Econ Perspect 22(1), 45–66.

    Article  Google Scholar 

  • K.G. Cassman and P.L. Pingali (1995). Intensification of irrigated rice systems: Learning from the past to meet future challenges. GeoJournal 35, 299–305.

    Article  Google Scholar 

  • P.S. Cocks (2001). Ecology of herbaceous perennial legumes: A review of characteristics that may provide management options for the control of salinity and waterlogging in dryland cropping systems. Aust J Agric Res 52(2), 137–151.

    Article  Google Scholar 

  • J. DeVries and G. Toenniessen (2001). Securing the harvest: Biotechnology, breeding, and seed systems for African crops. CAB International, Wallingford.

    Google Scholar 

  • M. Duranti and C. Gius (1997). Legume seeds: Protein content and nutritional value. Field Crops Res 53, 31–45.

    Article  Google Scholar 

  • J.N. Galloway, H. Levy, II, and P.S. Kashibhatla (1994). Year 2020: Consequences of population growth and development on deposition of oxidized nitrogen. AMBIO 23, 120–123.

    Google Scholar 

  • F.L. García-Carreño and E. Troyo-Diéguez (1991). Potencialidad del mezquite como indicador de la calidad del agua subterránea. Biotam 3(1), 47–58.

    Google Scholar 

  • F.L. García-Carreño, E. Troyo-Diéguez, and J.L. Ochoa (1992). Relationships between saline ground water, soil, and leaf tissue composition of the phreatophyte mezquite. Ground Water 30(5), 676–682 (September–October issue).

    Article  Google Scholar 

  • J.L. García-Hernández, R.D. Valdez-Cepeda, N.Y. Avila-Serrano, B. Murillo-Amador, A. Nieto-Garibay, R. Magallanes-Quintanar, J. Larrinaga-Mayoral, and E. Troyo-Diéguez (2005). Preliminary compositional nutrient diagnosis norms for cowpea (Vigna unguiculata (L.) Walp.) grown on desert calcareous soil. Plant Soil 271(1–2), 297–307.

    Article  Google Scholar 

  • K.E. Giller and G. Cadisch (1995). Future benefits from biological nitrogen fixation: An ecological approach to agriculture. Plant Soil 174(1–2), 255–277.

    Article  CAS  Google Scholar 

  • P.H. Graham and C.P. Vance (2003). Legumes: Importance and constraints to greater use. Plant Physiol 131, 872–877.

    Article  CAS  PubMed  Google Scholar 

  • I.E. Henson, V. Mahalaskshmi, F.R. Bidinger, and G. Alargarswamy (1981). Stomatal responses of pearl millet (Pennisetum americanum [L.] Leeke) genotypes, in relation to abscisic acid and water stress. J Exp Bot 32, 1211–1221.

    Article  CAS  Google Scholar 

  • R.G. Henzell, K.J. McCree, C.H.M. van Bavel, and K.F. Schertz (1976). Sorghum genotype variation in stomatal sensitivity to leaf water deficit. Crop Sci 16, 660–662.

    Article  Google Scholar 

  • P.R. Jennings (1974). Rice breeding and world food production. Science 186, 1085–1088.

    Article  CAS  PubMed  Google Scholar 

  • M.H. Jeuffroy and B. Ney (1997). Crop physiology and productivity. Field Crops Res 53, 3–16.

    Article  Google Scholar 

  • J.D. Kelly, J.M. Kolkman, and K. Schneider (1998). Breeding for yield in dry bean (Phaseolus vulgaris L.). Euphytica 102(3), 343–356.

    Article  Google Scholar 

  • P.J. Kramer (1988). Changing concepts regarding plant water relations. Plant Cell Environ 11, 565–568.

    Article  Google Scholar 

  • G. Ladizinsky and J. Smartt (2000). Opportunities for improved adaptation via further domestication. In: R. Knight, (ed.), Linking research and marketing opportunities for pulses in the 21st century, pp. 257–263. Kluwer Academic, Dordrecht.

    Google Scholar 

  • E.C. Lefroy, P.R. Dann, J.H. Wildin, R.N. Wesley-Smith, and A.A. McGowan (1992). Trees and shrubs as sources of fodder in Australia. Agroforest Syst 20(1–2), 117–139.

    Article  Google Scholar 

  • J.L. León de la Luz, R. Domínguez-Cadena, and S.C. Díaz-Castro (2005). Evaluación del peso del leño a partir de variables dimensionales en dos especies de mezquite Prosopis articulata S. Watson and P. Palmeri S. Watson, en Baja California Sur, México. Acta Bot Mex 72, 17–32.

    Google Scholar 

  • M.L. Morris and M.R. Bellon (2004). Participatory plant breeding research: Opportunities and challenges for the international crop improvement system. Euphytica 136(1), 21–35.

    Article  Google Scholar 

  • R. Murgai, M. Ali, and D. Byerlee (2001). Productivity growth and sustainability in post-green revolution agriculture: The case of the Indian and Pakistan Punjabs. World Bank Res Obser 16(2), 199–218.

    Article  Google Scholar 

  • B. Murillo-Amador, E. Troyo-Diéguez, A. López-Cortés, H.G. Jones, F. Ayala-Chairez, and C.L. Tinoco-Ojanguren (2001). Salt tolerance of cowpea genotypes in the emergence stage. Aust J Exp Agric 41(1), 81–88.

    Article  Google Scholar 

  • J.B. Passioura (1988). Response to Dr. P.J. Kramer’s article, ‘Changing concepts regarding plant water relations’, Volume 11, Number 7, pp. 565–568. Plant Cell Environ 11, 569–571.

    Article  Google Scholar 

  • D. Pimentel, L.E. Hurd, A.C. Bellotti, M.J. Forster, I.N. Oka, O.D. Sholes, and R.J. Whitman (1973). Food production and the energy crisis. Science 182(4111), 443–449.

    Article  CAS  PubMed  Google Scholar 

  • P. Pingali and M. Rosegrant 1998. Intensive food systems in Asia: Can the degradation problems be reversed? Paper presented at the Pre-Conference Workshop, Agricultural Intensification, Economic Development, and the Environment, 1 July–31 August. Annual meeting of the American Agricultural Economics Association, Salt Lake City, USA.

    Google Scholar 

  • P. Pinstrup-Andersen and R. Pandya-Lorch (1996). Food for all in 2020—can the world be fed without damaging the environment. Environ Conserv 23, 226–234.

    Article  Google Scholar 

  • M.E. Rogers, C.L. Noble, and R.J. Pederick (1997). Identifying suitable temperate forage legume species for saline areas. Aust J Exp Agric 37(6), 639–645.

    Article  Google Scholar 

  • S.S. Snapp and S.N. Silim (2002). Farmer preferences and legume intensification for low nutrient environments. Plant Soil 245(1), 181–192.

    Article  CAS  Google Scholar 

  • D. Tilman, K.G. Cassman, P.A. Matson, R. Naylor, and S. Polasky (2002). Agricultural sustainability and intensive production practices. Nature 418, 671–677.

    Article  CAS  PubMed  Google Scholar 

  • D. Tilman, J. Fargione, B. Wolff, C. D’Antonio, A. Dobson, R. Howarth, D. Schindler, W.H. Schlesinger, D. Simberloff, and D. Swackhamer (2001). Forecasting agriculturally driven global environmental change. Science 292, 281–284.

    Article  CAS  PubMed  Google Scholar 

  • M.K. Udvardi and W.R. Scheible (2005). GRAS genes and the symbiotic green revolution. Science 308(5729), 1749–1750.

    Article  CAS  PubMed  Google Scholar 

  • C. van Kessel and C. Hartley (2000). Agricultural management of grain legumes: Has it led to an increase in nitrogen fixation? Field Crops Res 65(2–3), 165–181.

    Article  Google Scholar 

  • P.M. Vitousek and P.A. Matson (1993). Agriculture, the global nitrogen cycle, and trace gas flux. In: Oremland, R.S. (ed.), The biogeochemistry of global change: Radiatively active trace gases, pp. 193–208. Chapman and Hall, New York.

    Google Scholar 

  • R.M. Welch and R.D. Graham (2000). A new paradigm for world agriculture: Productive, sustainable, nutritious, healthful food systems. Food Nutr Bull 21(4), 361–366.

    Google Scholar 

  • B. Wollenweber, J.R. Porter, and T. Lübberstedt (2005). Need for multidisciplinary research towards a second green revolution. Curr Opin Plant Biol 8(3), 337–341.

    Article  PubMed  Google Scholar 

  • L. Yapa (1993). What are improved seeds? An epistemology of the green revolution. Econ Geogr 69(3), 254–273.

    Article  Google Scholar 

Download references

Acknowledgements

Thanks are due to Centro de Investigations Biologicas del Noroeste and Consejo Nacional de Ciencia y Tecnologia of Mexico for financial support, through the Project CONACyT-SEP Inv. Basica 2007-82313. Authors thank Juan Vega, Alvaro Gonzalez and Arturo cruz for technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enrique Troyo-Diéguez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Troyo-Diéguez, E., Cortés-Jiménez, J., Nieto-Garibay, A., Murillo-Amador, B., Valdéz-Cepeda, R., García-Hernández, J.L. (2010). Ecology and Adaptation of Legumes Crops. In: Yadav, S., Redden, R. (eds) Climate Change and Management of Cool Season Grain Legume Crops. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3709-1_3

Download citation

Publish with us

Policies and ethics