Skip to main content

Microbes and Agrochemicals to Stress Tolerance

  • Chapter
  • First Online:
  • 1055 Accesses

Abstract

Global climatic change significantly modulates physiology of drought. Related are increase in CO2 concentration and mineral deficiency. Drought is one of the major stresses that limit agriculture productivity. Drought affects both legumes and their symbionts. Inoculated plants can better adapt under stress than un-inoculated ones. Inoculation with competitive and -tolerant microbes may be economically feasible way to enhance legume productivity in stressed environments. This review deals with the effects of drought, CO2 and minerals on Biological Nitrogen Fixation and possibility of the use of microbes in the amelioration of these stresses in legumes. CO2 enrichment under drought causes an enhancement of photo assimilation, an increased partitioning of carbon to nodules, whose main effect are to sustain nodule growth, which helped sustain N2 rates under soil water deficits.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • M.F. Allen (1982). Influence of vesicular-arbuscular mycorrhizae on water movement through Bouteloua gracilis (H.B.K.) Lag ex Steud. New Phytol 91, 191–196.

    Article  Google Scholar 

  • M.F. Allen and M.G. Boosalis (1983). Effects of two species of VA mycorrhizal fungi on drought tolerance of winter wheat. New Phytol 93, 67–76.

    Article  Google Scholar 

  • M.F. Allen, T.S. Moore, Jr, and M. Christensen (1980). Phytohormone changes in Bouteloua gracilis infected by vesicular-arbuscular mycorrhizae. I. Cytokinin increases in the host plant. Can J Bot 58, 371–374.

    CAS  Google Scholar 

  • M.F. Allen, T.S. Moore, Jr, and M. Christensen (1982). Phytohormone changes in Bouteloua gracilis infected by vesicular-arbuscular mycorrhizal fungi. II. Altered levels of gibberellin-like substances and abscisic acid in the host plant. Can J Bot 60, 468–471.

    Article  CAS  Google Scholar 

  • M.F. Allen, W.K. Smith, T.S. Moore, Jr, and M. Christensen (1981). Comparative water relations and photosynthesis of mycorrhizal and non-mycorrhizal Bouteloua gracilis H.B.K. New Phytol 88, 683–693.

    Article  Google Scholar 

  • T.S. Al-Niemi, M.L. Kahn, and T.R. McDermott (1997). P metabolism in the bean Rhizobium tropici symbiosis. Plant Physiol 113, 1233–1242.

    CAS  PubMed  Google Scholar 

  • M. Arshad, B. Shaharoona, and T. Mahmood (2008). Inoculation with Pseudomonas spp. Containing ACC-deaminase partially eliminates the effects of drought stress on growth, yield, and ripening of pea (Pisum sativum L.). Pedosphere 18(5), 611–620.

    Article  Google Scholar 

  • M. Athar (1998a). Drought tolerance by lentil rhizobia (Rhizobium leguminosarum) from arid and semiarid areas of Pakistan. Lett Appl Bicrobiol 26, 38–45.

    Article  Google Scholar 

  • M. Athar (1998b). Drought tolerance by lentil rhizobia (Rhizobium leguminosarum) from arid and semi-arid areas of Pakistan. Lett Appl Microbiol 26, 38–42.

    Article  Google Scholar 

  • M. Athar and D.A. Johnson (1996). Influence of drought on competition between selected Rhizobium meliloti strains and naturalized soil rhizobia in alfalfa. Plant Soil 184, 231–241.

    Article  CAS  Google Scholar 

  • M. Athar and D.A. Johnson (1997). Effect of drought on the growth and survival of Rhizobium meliloti strains from Pakistan and Nepal. J Arid Environ 35(2), 335–340.

    Article  Google Scholar 

  • R.M. Augé, A.J.W. Stodola, J.E. Tims, and A.M. Saxton (2001). Moisture retention properties of a mycorrhizal soil. Plant Soil 230, 87–97.

    Article  Google Scholar 

  • K.Z. Bai, T.Y. Kuang, and L. Ding (1996). Physiological responses of soybean to doubling atmospheric CO2 concentration. Chin Sci Bull 41, 164–166.

    Google Scholar 

  • J.S. Bailey and A.S. Laidlaw (1999). The interactive effects of phosphorus, potassium, lime, and molybdenum on the growth and morphology of white clover (Trifolium repens L.) at establishment. Grass For Sci 54, 69–76.

    Article  CAS  Google Scholar 

  • J. Bakht (1995). The role of Abscisic Acid in Chick Pea (Cicer aretinum L.) cold tolerance. Ph.D. Thesis. Department of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan.

    Google Scholar 

  • Y. Bashan, G. Holguin, and L. de-Bashan (2004). Azospirillum-plant relationships: Physiological, molecular, agricultural, and environmental advances (1997–2003). Can J Microbiol 50, 521–577.

    Article  CAS  PubMed  Google Scholar 

  • R. Bottini, M. Fulchieri, D. Pearce, and R. Pharis (1989). Identification of gibberellins A1, A3, and Iso-A3 in cultures of A. lipoferum. Plant Physiol 90, 45–47.

    Article  CAS  PubMed  Google Scholar 

  • J.M. Bowler and M.C. Press (1996). Effects of elevated CO2, nitrogen form and concentration on growth and photosynthesis of a fast- and slow-growing grass. New Phytol 132, 391–401.

    Article  CAS  Google Scholar 

  • S. Burdman, J. Kigel, and Y. Okon (1997). Effects of Azospirillum brasilense on nodulation and growth of common bean (Phaseolus vulgaris L.). Soil Biol Biochem 29, 923–929.

    Article  CAS  Google Scholar 

  • S. Burdman, D. Vedder, M. German, R. Itzigsohn, J. Kigel, E. Jurkevitch, and Y. Okon (1998). Legume crop yield promotion by inoculation with Azospirillum. In: Elmerich, C., Kondorosi, A., and Newton, W.E. (eds.), Biological nitrogen fixation for the 21st century, pp. 609–612. Kluwer, Dordrecht.

    Google Scholar 

  • J.R. Caradus (1981). Effect of root hair length on white clover growth over a range of soil phosphorus levels. N Z J Agric Res 24, 353–358.

    Google Scholar 

  • L. Cisse and B. Amar (2000). The importance of phosphate fertilizer for increased crop production in developing countries. AFA 6th international annual conference, 31 January–2 February 2000, Cairo, Egypt

    Google Scholar 

  • S. Dobbelaere, A. Croonenborghs, A. Thys, D. Ptacek, J. Vanderleyden, P. Dutto, C.L. Gonzalez, J.C. Mellado, J.F. Aguirre, Y. Kapulnik, S. Brener, S. Burdman, S.D.S. Kadouri, and Y. Okon (1999). Responses of agronomically important crops to inoculation with Azospirillum. Aust J Plant Physiol 28(9), 871–879.

    Google Scholar 

  • S.M. Duff, G. Sarath, and W.C. Plaxton (1994). The role of acid phosphatases in plant phosphorous metabolism. Physiol Plant 90, 791–800.

    Article  CAS  Google Scholar 

  • D.C. Edmeades, F.P.C. Blamey, C.J. Asher, and D.G. Edwards (1991). Aust J Agric Res 42(5), 893–900.

    Article  Google Scholar 

  • W.C. Evans (1977). Biochemistry of the bacterial catabolism of aromatic compounds in anaerobic environments. Nature 270, 17–22.

    Article  CAS  PubMed  Google Scholar 

  • R. Ferris, T.R. Wheeler, R.H. Ellis, and P. Hadley (1999). Seed yield after environmental stress in soybean grown under elevated CO2. Crop Sci 39, 710–718.

    Article  Google Scholar 

  • C.B. Field, R.B. Jackson, and H.A. Mooney (1995). Stomatal responses to increased CO2: implications from the plant to the global scale. Plant Cell Environ 18, 1214–1225.

    Article  Google Scholar 

  • C.W. Ford (1984). Accumulation of low molecular weight solutes in water-stressed tropical legumes. Phytochemistry 23(5), 1007–1015.

    Article  CAS  Google Scholar 

  • A. Galiana, G.M. Gnahoua, J. Chaumont, D. Lesueur, Y. Prin, and B. Mallet (1998). Improvement of nitrogen fixation in Acacia mangium through inoculation with rhizobium. Agroforest Syst 40, 297–307.

    Article  Google Scholar 

  • Q. Gao and M.J. Shaffer (2002). Simulating interactive effects of symbiotic nitrogen fixation, carbon dioxide elevation, and climatic change on legume growth. J Environ Qual 31(2), 634–641.

    Article  PubMed  Google Scholar 

  • M.A. German, S. Burdman, Y. Okon, and J. Kigel (2000). Effect of Azospirillum brasilense on root morphology of common bean (Phaseolus vulgaris L.) under different water regimes. Biol Fertil Soils 32, 259–264.

    Article  Google Scholar 

  • R.A. Gill, H.W. Polley, H.B. Johnson, L.J. Anderson, H. Maherall, and R.B. Jackson (2002). Nonlinear grassland responses to past and future atmospheric CO2. Nature 417, 279–282.

    Article  CAS  PubMed  Google Scholar 

  • C. Grashoff, P. Dijkstra, S. Nonhebel, H.C.M. Schapendonk, and S.C.V.D. Geijn (1994). Effects of climate change on productivity of cereals and legumes; model evaluation of observed year-to-year variability of the CO2 response. Global Change Biol 1(6), 417–428.

    Article  Google Scholar 

  • H. Greenway, P.G. Hughes, and B. Klepper (1969). Effects of water deficit on phosphorus nutrition of tomato plants. Physiol Plantarum 22, 199–207.

    Article  CAS  Google Scholar 

  • R. Hadas and Y. Okon (1987). Effect of Azospirillum brasilense on root morphology and respiration in tomato seedlings. Biol Fertil Soils 5, 241–247.

    Article  Google Scholar 

  • K. Hardie and L. Leyton (1981). The influence of vesicular-arbuscular mycorrhiza on growth and water relations of red clover. I. In phosphate deficient soil. New Phytol 89, 599–608.

    Article  Google Scholar 

  • R.W.F. Hardy and U.D. Havelka (1974). The nitrogen barrier. Crops Soils 26(5), 10–13.

    Google Scholar 

  • R. Hilda and R. Fraga (1999). Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnol Adv 17, 319–359.

    Article  Google Scholar 

  • K.E. Idso and S.B. Idso (1994). Plant responses to atmospheric CO2 enrichment in the face of environmental constraints: A review of the past 10 years’ research. Agri Forest Meteorol 69, 153–203.

    Article  Google Scholar 

  • N. Ilyas (2008). Isoaltion and biochemical characterization of efficient strains of Rhizobium and Azospirillum from Wheat and Maize under water stress. Ph.D. thesis. Departement of Plant Sciences, Faculty of Biological Sciences, Quaid-i-Azm University, Islamabad, Pakistan.

    Google Scholar 

  • Intergovernmental Panel on Climate Change (2001). Climate Change 2001: Synthesis Report, Summary for Policymakers. Available at http://www.ipcc.ch/pub/un/syreng/spm.pdf [verified 31 Aug. 2007]. IPCC, Geneva.

  • D.W. Israel (1987). Investigation of the role of phosphorus in symbiotic dinitrogen fixation. Plant Physiol 84, 835–840.

    Article  CAS  PubMed  Google Scholar 

  • I. Jacobsen (1985). The role of phosphorus in nitrogen fixation by young pea plants (Pisum sativum). Physiol Plant 64, 190–196.

    Article  Google Scholar 

  • R.H. Jackman and M.C.H. Mouat (1972). Competition between grass and clover for phosphate. 1. Effect of browntop (Agrostis tenuis Sibth) on white clover growth (Trifolium repens L.). New Zealand J Agri Res 15, 653–666.

    CAS  Google Scholar 

  • H. Jin, P.E. Pfeffer, D.D. Douds, E. Piotrowski, P.J. Lammers, and Y. Shachar-Hill (2005). The uptake, metabolism, transport and transfer of nitrogen in an arbuscular mycorrhizal symbiosis. New Phytol 168, 687–696.

    Article  CAS  PubMed  Google Scholar 

  • C.R. Johnson, J.A. Menge, S. Schwab, and I.P. Ting (1982). Interaction of photoperiod and vesicular-arbuscular mycorrhizae on growth and metabolism of sweet orange. New Phytol 90, 665–669.

    Article  CAS  Google Scholar 

  • A.M. Johnston, G.W. Clayton, G.P. Lafond, K.N. Harker, T.J. Hogg, E.N. Johnson, W.E. May, and J.T. McConnell (2002). Field pea seeding management. Can J Plant Sci 82, 639–644.

    Google Scholar 

  • T.R. Karl, N. Nicholls, and J. Gregory (1997). The coming climate. Scientific American 5, 78–83.

    Article  Google Scholar 

  • J.N. Klironomos, M. Ursic, M. Rillig, and M.F. Allen (1998). Interspecific differences in the response of arbuscular mycorrhizal fungi to Artemisia tridentata grown under elevated atmospheric CO2. New Phytol 138, 599–605.

    Article  Google Scholar 

  • C. Korner (2000). Biosphere responses to CO2 enrichment. Ecol Appl 10, 1590–1619.

    Google Scholar 

  • S. Kots, Ya. Mikhalkiv, L.M.N. Mandrovs’ka, L.V. Kosenko, and T.V. Zatovs’ka (2002). Influence of Sinorhizobium meliloti glucan on formation and functioning of nitrogen fixation symbiotic systems in alfalfa under different water supply. Inst Fiziol Roslin Genet NAN Ukr Kiev Ukraine Fiziologiya i Biokhimiya Kul’turnykhRastenii 34(5), 413–418.

    CAS  Google Scholar 

  • R.M.N. Kucey and E.A. Paul (1982). Carbon flow, photosynthesis, and N2 fixation in mycorrhizal and nodulated faba beans (Vicia faba L.). Soil Biol Biochem 14, 407–412.

    Article  Google Scholar 

  • Y. Levy and J. Krikun (1980). Effect of vesicular-arbuscular mycorrhiza on Citrus jambhiri water relations. New Phytol 85, 25–31.

    Article  Google Scholar 

  • J. López-Bucio, E. Hernández-Abreu, L. Sánchez-Calderón, M.F. Nieto-Jacobo, J. Simpson, and L. Herrera-Estrella (2002). Phosphate availability alters architecture and causes changes in hormone sensitivity in the arabidopsis root system. Plant Physiol Preview 10, 1104-010934.

    Google Scholar 

  • A. Luscher, M. Daepp, H. Blum, U.A. Hartwug, and J. Nberger (2004). Fertile temperate grassland under elevated CO2 – role of feed-back mechanisms and availability of growth resources. Euro J Agron 21, 379–398.

    Article  Google Scholar 

  • L.G. Lvez, E.M.G. Lez, and C. Arrese-Igor (2005). Evidence for carbon flux shortage and strong carbon/nitrogen interactions in pea nodules at early stages of water stress. J Exper Bot 56(419), 2551–2561.

    Article  CAS  Google Scholar 

  • S. Majeed (2001). Changes in the level of phytohormones in soybeans (Glycine max L.) Merril in response to drought stress and inoculation. M. Phil thesis Department of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan

    Google Scholar 

  • D. Marino, P. Frendo, R. Ladrera, A. Zabalza, A. Puppo, C. Arrese-Igor, and E.M. González (2007). Nitrogen fixation control under drought stress: Localized or systemic? Plant Physiol 143, 1968–1974.

    Article  CAS  PubMed  Google Scholar 

  • H. Marshner (1995). Mineral nutrition of higher plants, 2nd ed. Academic press, San Diego, CA, p. 835.

    Google Scholar 

  • J.I. Melchior-Marroquin, J.J. Vargas-Hernandez, R. Herrera-Cerrato, and L. Krishnamurthy (1999). Screening Rhizobium spp. Strains associated with Gliricidia sepium along an altidudinal transect in Veracruz, Mexico. Agroforest Syst 46, 25–38.

    Article  Google Scholar 

  • S.L. Miao, P.M. Wayne, and F.A. Bazzaz (1992). Elevated CO2 differentially alters the responses of co-occurring birch and maple seedlings to a moisture gradient. Oecologia 90, 300–304.

    Google Scholar 

  • P.R. Miller, B.G. McConkey, G.W. Clayton, S.A. Brandt, J.A. Staricka, A.M. Johnston, G.P. Lafond, B.G. Schatz, D.D. Baltensperger, and K.E. Neill (2002). Pulse crop adaptation in the Northern Great Plains. Agron J 94, 261–272.

    Article  Google Scholar 

  • J.I.L. Morison (1993). Response of plants to CO2 under waterlimited conditions. Vegetatio 104/105, 193–209.

    Article  Google Scholar 

  • S.R. Morse, P. Wayne, S.L. Miao, and F.A. Bazzaz (1993). Elevated CO2 and drought alter tissue water relations of birch (Betula populifolia Marsh.) seedlings. Oecologia 95, 599–602.

    Google Scholar 

  • A.S. Nandwal, A. Hooda, and D. Datta (1998). Effect of substrate moisture and potassium on water relations and C, N and K distribution in Vigna radiate. Biol Plant 41(1), 149–153.

    Article  Google Scholar 

  • V. Niel, J.H. de Best, E.P.W. Kets, C.F.C. Bonting, and G.J.J. Kortstee (1999). Polyphosphate formation by Acinetobacterjohnsonii 21 OA: Effect of cellular energy status and phosphate-specific transport system. Appl Microbiol Biotech 51, 639–646.

    Article  Google Scholar 

  • Y. Okon (1985). Azospirillum as potential inoculant for agriculture. Trends Biotechnol 3, 223–228.

    Article  Google Scholar 

  • Y. Okon and J. Vanderleyden (1997). Root-associated Azospirillum species can stimulate plants. ASM News 63, 366–370.

    Google Scholar 

  • L.O. OsangAlfiana and M. Alexander (1982). Differences among cowpea Rhizobium in tolerance to high temperature and desiccation in soil. Appl Environ Microbiol 43, 435–439.

    Google Scholar 

  • C. Ottander and G. Oquist (1991). Recovery of photosynthesis in winter stressed Scot pine. Plant Cell Environ 14, 345–349.

    Article  Google Scholar 

  • C.E. Pankhurst and J.I. Sprent (1975). Surface features of soybean root nodules. Protoplasma 85, 85–98.

    Article  Google Scholar 

  • M.A. Pereyra, C.A. Zalaza, and C.A. Barassi (2006). Root phospholipids in Azospirillum-inoculated wheat seedlings exposed to water stress. Plant Physiol Biochem 44, 873–887.

    Article  CAS  PubMed  Google Scholar 

  • H.W. Polley, C.R. Tischler, H.B. Johnson, and R.B. Pennington (1999). Growth, water relations, and survival of drought-exposed seedlings from six maternal families of honey mesquite (Prosopis glandulosa): responses to CO2 enrichment. Tree Physiol 19, 359–366.

    PubMed  Google Scholar 

  • J. Radin (1984). Stomatal responses to water stress and to abscisic acid in phosphorus-deficient cotton plants. Plant Physiol 76, 392–394.

    Article  CAS  PubMed  Google Scholar 

  • A.I.M. Rao and N. Terry (1994). Leaf phosphate status and photosynthesis in vivo. Changes in sugar phosphates, adenylates and nicotinamide nucleotides during photosynthetic induction in sugar beet. Photosynthetica 30, 243–254.

    CAS  Google Scholar 

  • J.J. Read, J.A. Morgan, N.J. Chatterton, and P.A. Harrison (1997). Gas exchange and carbohydrate and nitrogen concentrations in leaves of Pascopyrum smithii (C3) and Bouteloua gracilis (C4) at different carbon dioxide concentrations and temperatures. Ann Bot 79, 197–206.

    Article  CAS  Google Scholar 

  • A. Rehman and C.S. Nautiyal (2002). Effect of drought on the growth and survival of the stress-tolerant bacterium Rhizobium sp. NBRI2505 sesbania and its drought-sensitive transposon Tn5 mutant. Curr Microbiol 45, 368–377.

    Article  CAS  PubMed  Google Scholar 

  • P.B. Reich, D. Tilman, J. Craine, D. Ellsworth, M.G. Tjoelker, J. Knops, D. Wedin, S. Naeem, D. Bahauddin, and J. Goth (2001). Do species and functional groups differ in acquisition and use of C, N and water under varying atmospheric CO2 and N availability regimes? A field test with 16 grassland species. New Phytol 150, 435–448.

    Article  CAS  Google Scholar 

  • C.P.P. Reid (1979). Mycorrhizae and water stress. In: Reidacher, A. and Gagnaire-Michard, G. (eds.), Root physiology and symbiosis, pp. 392–408. IUFRO Proc, Nancy, France.

    Google Scholar 

  • J. Ribet and J.J. Drevon (1995). Phosphorus deficiency increases the acetylene induced decline of nitrogenase activity in soybean (Glycine max L.). J Exp Bot 46, 1479–1486.

    Article  CAS  Google Scholar 

  • M.C. Rillig and C.B. Field (2003). Arbuscular mycorrhizae respond to plants exposed to elevated atmospheric CO2 as a function of soil depth. Plant Soil 254, 383–391.

    Article  CAS  Google Scholar 

  • J. Ribet and J.J. Drevon (1996). The phosphorus requirement of N2 fixing and urea-fed Acacia mangium. New Phytol 132, 383–390.

    Article  CAS  Google Scholar 

  • A.D. Robson (1978). Mineral nutrients limiting nitrogen fixation in legumes. In Andrew, C.S. and Kamprath, E.J. (eds.), Mineral nutrition of legumes on tropical and subtropical soils. Commonwealth Scientific and Industrial Research Organization, Melbourne, Australia, pp. 277–293.

    Google Scholar 

  • A.D. Robson, G.W. O’hara, and L.K. Abbarr (1981). Involvement of phosphorus in nitrogen fixation by subterranean clover (Trifolium subterraneum L.). Aust J Plant Physiol 8, 427–436.

    Article  CAS  Google Scholar 

  • H. Rodriguez and R. Fraga (1999). Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnol Adv 285, 260–263.

    Google Scholar 

  • H.H. Rogers, S.A. Prior, G.B. Runion, and R.J. Mitchell (1996). Root to shoot ratio of crops as influenced by CO2. Plant Soil 187, 229–248.

    Article  CAS  Google Scholar 

  • T.W. Rufty, T. MacKown’C, and R.J. Volk (1993). Effects of altered carbohydrate availability on whole-plant assimilation of I5NO3–. Plant Physiol 89, 457–463.

    Article  Google Scholar 

  • A.B. Samarkoon and R.M. Gifford (1996). Elevated CO2 effects on water use and growth of maize in wet and drying soils. Aust J Plant Physiol 23, 53–62.

    Article  Google Scholar 

  • H.K. Saneoka and O.S. Fugita (1990). Effect of phosphorus on drought tolerance in Chloris gayana Kunth and Coix lacryma-jobi L. Soil Sci Plant Nutr 36, 267–274.

    CAS  Google Scholar 

  • U.R. Sangakkara, U.A. Hartwig, and J. Noesberger (1996). Soil moisture and potassium affect the performance of symbiotic nitrogen fixation in faba bean and common bean. Plant Soil 184, 123–130.

    Article  CAS  Google Scholar 

  • M.G. Santos, R.V. Ribeiro, R.F. Oliveria, and C. Primentel (2004). gas exchange and yield responses to foliar phosphorous applications in Phaseolous vulgaris L. under drought. Braz J Plant Phsyiol 16, 171–179.

    Google Scholar 

  • W.F. Sayed, C.T. Wheeler, H.H. Zahran, and A.A.M. Shoreit (1997). Effect of temperature and soil moisture on the survival and symbiotic effectiveness of Frankia spp. Biol Fertil Soil 25, 854–859.

    Article  Google Scholar 

  • S.H. Schneider (1994). Detecting climatic change signals: Are there any “fingerprints”? Science 263, 341–347.

    Article  CAS  PubMed  Google Scholar 

  • R. Serraj (2003). Atmospheric CO2 increase benefits symbiotic N2 fixation by legumes under drought. Curr Sci 85(9), 1341–1343.

    Google Scholar 

  • E. Sieverding (1981). Influence of soil water regimes on VA mycorrhizae. Effect on plant growth, water utilization and development of mycorrhiza. J Agron Crop Sci 150, 400–411.

    Google Scholar 

  • T.R. Sinclair and R. Serraj (1995). Dinitrogen fixation sensitivity to drought among grain legume species. Nature 378, 344.

    Article  CAS  Google Scholar 

  • W.R. Skinner and J.A. Majorowicz (1999). Regional climatic warming and associated twentieth century land-cover changes in northwestern North America. Clim Res 12, 39–52.

    Article  Google Scholar 

  • D.L. Smith and J.J. Almaraz (2004). Climate change and crop production: Contributions, impacts, and adaptations. Can J Plant Pathol 26, 253–266.

    Article  Google Scholar 

  • R.C. Snellgrove, W.E. Splittstoesser, D.P. Stribley, and P.B. Tinker (1982). The distribution of carbon and the demand of the fungal symbiont in leek plants with vesicular-arbuscular mycorrhizas. New Phytol 92, 75–87.

    Article  Google Scholar 

  • P.L. Staddon and A.H. Fitter (1998). Does elevated carbon dioxide affect arbuscular mycorrhizas? Trends Ecol Evol 13, 455–458.

    Article  Google Scholar 

  • P.L. Staddon, J.D. Graves, and A.H. Fitter (1998). Effect of enhanced atmospheric CO2 on mycorrhizal colonisation by Glomus mosseae in Plantago lanceolata and Trifolium repens. New Phytol 139, 571–580.

    Article  Google Scholar 

  • B.W. Straub, M. Kicherer, M. Schilcher, S.M. Hammes, and W.P. Hammes (1995). The formation of biogenic amines by fermentation organisms. Z Lebensm Unter Forsch 201, 79–82.

    Article  CAS  Google Scholar 

  • F. Teyssonneyre, C. Picon-Cochard, R. Falcimagne, and J.F. Soussana (2002). Effects of elevated CO2 and cutting frequency on plant community structure in a temperate grassland. Global Change Biol 8, 1034–1046.

    Article  Google Scholar 

  • J.F. Thomas, C.D. Raper, and W.W. Weeks (1981). Day and night temperature effects on nitrogen and soluble carbohydrate allocation during early reproductive growth in soybeans. Agron J 73, 577–582.

    Article  CAS  Google Scholar 

  • J.H.M. Thornley, J. Bergelson, and A.J. Parsons (1995). Complex dynamics in a carbon nitrogen model of a grass legume pasture. Ann Bot 75, 79–94.

    Article  Google Scholar 

  • C.A. Ticconi, C.A. Delatorre, B. Lahner, D.E. Salt, and S. Abel (2004). Arabidopsis pdr2 reveals a phosphate-sensitive checkpoint in root development. Plant J 37, 801–814.

    Article  CAS  PubMed  Google Scholar 

  • J.M. Vincent, P.S. Nutman, and F.A. Skinner (1979). The identification and classification of Rhizobium. In: Skinner, F.A. and Lovelock, D.W. (eds.), Identification methods for biologists. The Society for Applied Bacteriology Technical Series No. 4, pp. 49–69. Academic Press, New York.

    Google Scholar 

  • J.J. Wolf (2001). The influence of physical soil conditions on the formation of root nodules of Melilotus officinalis in the montane zone of Rocky Mountain National Park. Euro J Soil Boil 37, 51–57.

    Article  Google Scholar 

  • C. Xiao, I.A. Janssens, P. Liu, Z. Zhou, and O.J. Sun (2007). Irrigation and enhanced soil carbon input effects on below ground carbon cycling in semi arid temperate grasslands. New Phytol 174, 835–846.

    Article  CAS  PubMed  Google Scholar 

  • H.H. Zahran (1998). Structure of root nodules and nitrogen fixation in Egyptian wild herb legumes. Biol Plant 41, 575–585.

    Article  Google Scholar 

  • H.H. Zahran (1999). Rhizobium-legume symbiosis and nitrogen fixation under severe conditions and in arid climate. Microbial Mol Biol Rev 63, 968–989.

    CAS  Google Scholar 

  • H.H. Zahran (2001). Rhizobia from wild legumes: Diversity, taxonomy, ecology, nitrogen fixation and biotechnology. J Biotechnol 91(2–3), 143–153.

    Article  CAS  PubMed  Google Scholar 

  • F. Zhang, N. Dashti, R.K. Hynes, and D.L. Smith (1996). Plant growth promoting rhizobacteria and soybean [Glycine max (L.) Merr.] nodulation and nitrogen fixation at suboptimal root zone temperatures. Ann Bot 77, 453–459.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Asghari Bano .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Bano, A., Ilyas, N. (2010). Microbes and Agrochemicals to Stress Tolerance. In: Yadav, S., Redden, R. (eds) Climate Change and Management of Cool Season Grain Legume Crops. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3709-1_16

Download citation

Publish with us

Policies and ethics