Skip to main content

Covalent Heterogenization of Asymmetric Catalysts on Polymers and Nanoparticles

  • Chapter
  • First Online:
Heterogenized Homogeneous Catalysts for Fine Chemicals Production

Part of the book series: Catalysis by Metal Complexes ((CMCO,volume 33))

Abstract

The development of enantioselective processes involving the use of catalytic species covalently bonded onto polymers and nanoparticles has gained a considerable importance over the last decade, as sustainability concerns have deeply influenced the practice of chemistry. In this review, an overview is given of the different strategies followed for the covalent immobilization of ligand–metal assemblies (for metal catalysis) and catalytic organic molecules (for organocatalysis) onto organic polymers and nanoparticles, paying special attention to the factors that control catalytic activity and enantioselectivity. Efforts devoted to the development of continuous flow processes with immobilized catalysts of these types are also reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. (a) De Vos DE, Vankelecom IFJ, Jacobs PA (eds) (2000) Chiral catalyst immobilization and recycling. Wiley, Weinheim; (b) Buchmeiser MR (ed) (2003) Polymeric materials in organic synthesis and catalysis. Wiley, Weinheim; (c) Ding K, Uozumi Y (eds) Handbook of asymmetric heterogeneous catalysis. Wiley, Weinheim; (d) Benaglia M (ed) (2008) Recoverable and recyclable catalysts. Wiley, Chichester

    Book  Google Scholar 

  2. For relevant reviews, see: (a) Fan QH, Li YM, Chan ASC (2002) Chem Rev 102:3385–3466; (b) Bräse S, Lauterwasser F, Ziegert RE (2003) Adv Synth Catal 345:869–929; (c) Trindade AF, Gois PMP, Afonso CAM (2009) Chem Rev 109:418–514

    Article  CAS  Google Scholar 

  3. (a) Houk KN, List B (eds) (2004) Acc Chem Res 37:631–847; (b) Dalko PI, Moisan L (2004) Angew Chem Int Ed 43:5138–5175; (c) Berkessel A, Gröger H, MacMillan D (eds) (2005) Asymmetric organocatalysis. In: Biomimetic concepts to applications in asymmetric synthesis. Wiley, Weinheim; (d) Koćovský P, Malkov AV (eds) (2006) Tetrahedron 62:243–502; (e) Pellissier H (2007) Tetrahedron 63:9267–9331; (f) List B (ed) (2007) Chem Rev 107:5413–5883; (g) Dondoni A, Massi A (2008) Angew Chem Int Ed 47:4638–4660; (h) MacMillan DWC (2008) Nature 455:304–308

    Article  Google Scholar 

  4. Reviews on supported organocatalysts: (a) Benaglia M, Puglisi A, Cozzi F (2003) Chem Rev 103:3401–3429; (b) Cozzi F (2006) Adv Synth Catal 348:1367–1390; (c) Benaglia M (2006) New J Chem 30:1525–1533; (d) Altava B, Burguete I, Luis SV (2008) Polymer-supported organocatalysts. In: Tulla-Puche J, Albericio F (eds) The power of functional resins in organic synthesis. Wiley, Weinheim

    Article  CAS  Google Scholar 

  5. (a) Breslow R (1995) Acc Chem Res 28:146–153; (b) Murakami Y, Kikuchi JI, Hisaeda Y, Hayashida O (1996) Chem Rev 96:721–758; (c) Motherwell WB, Bingham MJ, Six Y (2001) Tetrahedron 57:4663–4686; (d) Breslow R (ed) (2005) Artificial enzymes. Wiley, Weinheim

    Article  CAS  Google Scholar 

  6. Lu J, Toy PH (2009) Chem Rev 109:815–838

    Article  CAS  Google Scholar 

  7. Fraile JM, García JI, Mayoral JA (2009) Chem Rev 109:360–417

    Article  CAS  Google Scholar 

  8. Baker RT, Kobayashi S, Leitner W (2006) Adv Synth Catal 348:1317–1771

    Article  Google Scholar 

  9. Ikegami S, Hamamoto H (2009) Chem Rev 109:583–593

    Article  CAS  Google Scholar 

  10. Gruttadauria M, Giacalone F, Noto R (2008) Chem Soc Rev 37:1666–1688

    Article  CAS  Google Scholar 

  11. (a) Eder U, Sauer G, Wiechert R (1971) Angew Chem Int Ed Engl 10:496–497; (b) Hajos ZG, Parrish DR (1974) J Org Chem 39:1612–1615

    Article  CAS  Google Scholar 

  12. (a) List B, Lerner RA, Barbas III CF (2000) J Am Chem Soc 122:2395–2396; (b) Sakthivel K, Notz W, Bui T, Barbas III CF (2001) J Am Chem Soc 121:5260–5267

    Article  CAS  Google Scholar 

  13. Benaglia M, Celentano G, Cozzi F (2001) Adv Synth Catal 343:171–17

    Article  CAS  Google Scholar 

  14. Benaglia M, Cinquini M, Cozzi F, Puglisi A, Celentano G (2002) Adv Synth Catal 344:533–542

    Article  CAS  Google Scholar 

  15. Benaglia M, Cinquini M, Cozzi F, Puglisi A, Celentano G (2003) J Mol Catal A Chem 204–205:157–163

    Article  Google Scholar 

  16. Gu L, Wu Y, Zhang Y, Zhao G (2007) J Mol Catal A Chem 263(1–2):186–194

    Article  CAS  Google Scholar 

  17. Gruttadauria M, Giacalone F, Noto R (2009) Adv Synth Catal 351:33–57

    Article  CAS  Google Scholar 

  18. Kondo K, Yamano T, Takemoto K (1985) Makromol Chem 186:1781–1785

    Article  CAS  Google Scholar 

  19. Font D, Jimeno C, Pericàs MA (2006) Org Lett 8:4653–4655

    Article  CAS  Google Scholar 

  20. Font D, Bastero A, Sayalero S, Jimeno C, Pericàs MA (2007) Org Lett 9:1943–1946

    Article  CAS  Google Scholar 

  21. Font D, Sayalero S, Bastero A, Jimeno C, Pericàs MA (2008) Org Lett 10:337–340

    Article  CAS  Google Scholar 

  22. Alza E, Rodríguez-Escrich C, Sayalero S, Bastero A, Pericàs MA (2009) Chem Eur J 15:10167–10172

    Article  CAS  Google Scholar 

  23. Giacalone F, Gruttadauria M, Marculescu AM, Noto R (2007) Tetrahedron Lett 48:255–259

    Article  CAS  Google Scholar 

  24. Dondoni A (2008) Angew Chem Int Ed 47:8995–8997

    Article  CAS  Google Scholar 

  25. Gruttadauria M, Giacalone F, Marculescu AM, Lo Meo P, Riela S, Noto R (2007) Eur J Org Chem 4688–4698

    Article  Google Scholar 

  26. Kehat T, Portnoy M (2007) Chem Commun 2823–2825

    Article  Google Scholar 

  27. Moad G, Solomon DH (2006) The chemistry of radical polymerization, 2nd edn. Elsevier, Amsterdam, Boston

    Google Scholar 

  28. Kristensen TE, Vestli K, Fredriksen FK, Hansen FK, Hansen T (2009) Org Lett 11:2968–2971

    Article  CAS  Google Scholar 

  29. (a) Andreae MRM, Davis AP (2005) Tetrahedron Aymmetry 16:2487–2492; (b) Akagawa K, Sakamoto S, Kudo K (2005) Tetrahedron Lett 46:8185–8187; (c) Revell JD, Gantenbein D, Krattiger P, Wennemers H (2006) Biopolymers (Pept Sci) 84:105–113; (d) Yan J, Wang L (2008) Synthesis 2065–2072; (e) Carpenter RD, Fettinger JC, Lam KS, Kurth MJ (2008) Angew Chem Int Ed 47:6407–6410

    CAS  Google Scholar 

  30. (a) Gruttadauria M, Giacalone F, Marculescu AM, Noto R (2008) Adv Synth Catal 350:1397–1405; (b) Gruttadauria M, Salvo AMP, Giacalone F, Agrigento P, Noto R (2009) Eur J Org Chem 5437–5444

    Google Scholar 

  31. (a) Cobb AJA, Longbottom DA, Shaw DM, Ley SV (2004) Chem Commun 1808–1809; (b) Mitchell CET, Cobb AJA, Ley SV (2005) Synlett 611–614; (c) Luo S, Xu H, Mi X, Li J, Zheng X, Cheng, JP (2006) J Org Chem 71:9244–9247

    Google Scholar 

  32. Alza E, Cambeiro XC, Jimeno C, Pericàs MA (2007) Org Lett 9:3717–3720

    Article  CAS  Google Scholar 

  33. Miao T, Wang L (2008) Tetrahedron Lett 49:2173–2176

    Article  CAS  Google Scholar 

  34. (a) Palomo C, Mielgo A (2006) Angew Chem Int Ed 45:7876–7880; (b) Lattanzi A (2009) Chem Commun 1452–1463

    Article  CAS  Google Scholar 

  35. (a) Varela MC, Dixon SM, Lam KZ, Schore NE (2008) Tetrahedron 64:10087–10090; (b) Röben C, Stasiak M, Janza B, Greiner A, Wendorff JH, Studer A (2008) Synthesis 2163–2168

    Article  CAS  Google Scholar 

  36. Alza E, Pericàs MA (2009) Adv Synth Catal 351:3051–3056

    Article  CAS  Google Scholar 

  37. (a) Liu YX, Sun YN, Tan HH, Wei L, Tao JC (2007) Tetrahedron Asym 18:2649–2656; (b) Liu Y-X, Sun Y-N, Tan H-H, Tao J-C (2008) Catal Lett 120(3–4):281–287

    Article  CAS  Google Scholar 

  38. Luo S, Li J, Zhang L, Xu H, Cheng J-P (2008) Chem Eur J 14:1273–1281

    Article  CAS  Google Scholar 

  39. Ahrendt KA, Borths CJ, MacMillan DWC (2000) J Am Chem Soc 122:4243–4244

    Article  CAS  Google Scholar 

  40. (a) Lelais G, MacMillan DWC (2006) Aldrichimica Acta 39:79–87; (b) Erkkilä A, Majander I, Pihko PM (2007) Chem Rev 107:5416–5470

    CAS  Google Scholar 

  41. Benaglia M, Celentano G, Cinquini M, Puglisi A, Cozzi F (2002) Adv Synth Catal 344:149–152

    Article  CAS  Google Scholar 

  42. Puglisi A, Benaglia M, Cinquini M, Cozzi F, Celentano G (2004) Eur J Org Chem 567–573

    Google Scholar 

  43. Selkälä SA, Tois J, Pihko PM, Koskinen AMP (2002) Adv Synth Catal 344:941–945

    Article  Google Scholar 

  44. Haraguchi N, Takemura Y, Itsuno S (2010) Tetrahedron Lett 51:1205–1208

    Article  CAS  Google Scholar 

  45. (a) Jacobsen EN, Pfaltz A, Yamamoto H (eds) (1999) Comprehensive asymmetric catalysis, vols I–III. Springer, Berlin; (b) Mikami K, Lautens M (eds) (2007) New frontiers in asymmetric catalysis. Wiley, Hoboken

    Google Scholar 

  46. Dai LX (2004) Angew Chem Int Ed 43:5726–5729

    Article  CAS  Google Scholar 

  47. Dioos BML, Vankelecom IVF, Jacobs PA (2006) Adv Synth Catal 348:1413–1446

    Article  CAS  Google Scholar 

  48. Saluzzo C, Lamouille T, Hérault D, Lemaire M (2002) Bioorg Med Chem Lett 12:1841–1844

    Article  CAS  Google Scholar 

  49. Li Y, Li Z, Li F, Wang Q, Tao F (2005) Org Biomol Chem 3:2513–2518

    Article  CAS  Google Scholar 

  50. Arakawa Y, Haraguchi N, Itsuno S (2006) Tetrahedron Lett 47:3229–3243

    Article  Google Scholar 

  51. Liang Y, Jing Q, Li X, Shi L, Ding K (2005) J Am Chem Soc 127:7694–7695

    Article  CAS  Google Scholar 

  52. Liang Y, Wang Z, Ding K (2006) Adv Synth Catal 348:1533–1538

    Article  CAS  Google Scholar 

  53. Vidal-Ferran A, Bampos N, Moyano A, Pericàs MA, Riera A, Sanders JKM (1998) J Org Chem 63:6309–6318

    Article  CAS  Google Scholar 

  54. Vidal-Ferran A, Moyano A, Pericàs MA, Riera A (1997) J Org Chem 62:4970–4982

    Article  CAS  Google Scholar 

  55. Minutolo F, Pini D, Petri A, Salvadori P (1996) Tetrahedron Asymmetry 7:2293–2302

    Article  CAS  Google Scholar 

  56. Canali L, Cowan E, Deleuze H, Gibson CL, Sherrington DC (1998) Chem Commun 2561–2562

    Article  Google Scholar 

  57. Cho SH, Gadzikwa T, Afshari M, Nguyen ST, Hupp JT (2007) Eur J Inorg Chem 4863–4867

    Article  Google Scholar 

  58. Nielsen M, Thomsen AH, Jensen TR, Jakobsen HJ, Skibsted J, Gothelf KV (2005) Eur J Org Chem 342–347

    Google Scholar 

  59. Song CE, Yang JW, Roh EJ, Lee SG, Ahn JH, Han H (2002) Angew Chem Int Ed 41:3852–3854

    Article  CAS  Google Scholar 

  60. Trost BM, Pan Z, Zambrano J, Kujat C (2002) Angew Chem Int Ed 41:4691–4693

    Article  CAS  Google Scholar 

  61. (a) Solà L, Reddy KS, Vidal-Ferran A, Moyano A, Pericàs MA, Riera A, Alvarez-Larena A, Piniella JF (1998) J Org Chem 63:7078–7082; (b) Fontes M, Verdaguer X, Solà L, Pericàs MA, Riera A (2004) J Org Chem 69:2532–2543

    Google Scholar 

  62. Pericàs MA, Castellnou D, Rodríguez I, Riera A, Solà L (2003) Adv Synth Catal 345:1305–1313

    Article  Google Scholar 

  63. (a) Castellnou D, Solà L, Jimeno C, Fraile JM, Mayoral JA, Riera A, Pericàs MA (2005) J Org Chem 70:433–438; (b) Castellnou D, Fontes M, Jimeno C, Font D, Solà L, Verdaguer X, Pericàs MA (2005) Tetrahedron 61:12111–12120

    Google Scholar 

  64. (a) Pericàs MA, Herrerías CI, Solà L (2008) Adv Synth Catal 350:927–932; (b) Rolland J, Cambeiro XC, Rodríguez-Escrich C, Pericàs MA (2009) Beilstein J Org Chem 5:56

    Google Scholar 

  65. Fraile JM, Mayoral JA, Serrano J, Pericàs MA, Solà L, Castellnou D (2003) Org Lett 5:4333–4335

    Article  CAS  Google Scholar 

  66. Bastero A, Font D, Pericàs MA (2007) J Org Chem 72:2460–2468

    Article  CAS  Google Scholar 

  67. (a) Burguete MI, Díez-Barra E, Fraile JM, García JI, García-Verdugo E, González R, Herrerías CI, Luis SV, Mayoral JA (2002) Bioorg Med Chem Lett 12:1821–1824; (b) Díez-Barra E, Fraile JM, García JI, Garcia-Verdugo E, Herrerías CI, Luis SV, Mayoral JA, Sánchez-Verdú P, Tolosa J (2003) Tetrahedron Asymmetry 14:773–778; (c) Burguete MI, Fraile JM, García JI, García-Verdugo E, Luis SV, Mayoral JA (2000) Org Lett 2:3905–3908

    Google Scholar 

  68. Mandoli A, Orlandi S, Pini D, Salvadori P (2003) Chem Commun 2466–2467

    Google Scholar 

  69. Werner H, Herrerías CI, Glos M, Gissibl A, Fraile JM, Pérez I, Mayoral JA, Reiser O (2006) Adv Synth Catal 348:125–132

    Article  CAS  Google Scholar 

  70. (a) Uozumi Y, Danjo H, Hayashi T (1998) Tetrahedron Lett 39:8303–8306; (b) Hocke H, Uozumi Y (2004) Tetrahedron 60:9297–9306

    Google Scholar 

  71. (a) Uozumi Y, Shibatomi K (2001) J Am Chem Soc 123:2919–2920; (b) Nakai Y, Uozumi Y (2005) Org Lett 7:291–293; (c) Uozumi Y, Kimura M (2006) Tetrahedron: Asymmetry 17:161–166

    Google Scholar 

  72. Uozumi Y, Tanaka H, Shibatomi K (2004) Org Lett 6:281–283

    Article  CAS  Google Scholar 

  73. Zhao D, Sun J, Ding K (2004) Chem Eur J 10:5952–5963

    Article  CAS  Google Scholar 

  74. Popa D, Marcos R, Sayalero S, Vidal-Ferran A, Pericàs MA (2009) Adv Synth Catal 351:1539–1556

    Article  CAS  Google Scholar 

  75. (a) Astruc D (ed) (2007) Nanoparticles and catalysis, Wiley, Weinheim; (b) Abbet S, Heiz U (2004) In: Rao CNR, Müller A, Cheetham AK (eds) The chemistry of nanomaterials, vol 2, ch. 17. Wiley, Weinheim; (c) Klabunde KJ, Mulukutla RS (2001) In: Klabunde KJ (ed) Nanoscale materials in chemistry, ch. 7. Wiley, New York

    Google Scholar 

  76. (a) Somorjai GA, Park JY (2008) Angew Chem Int Ed 47:9212–9228; (b) Somorjai GA, Contreras AM, Montano M, Rioux RM (2006) Clusters, surfaces, and catalysis. PNAS 103:10577–10583; (c) Astruc D, Lu F, Aranzaes JR (2005) Angew Chem Int Ed 44:7852–7872; (d) Park KH, Chung YK (2005) Synlett 545–559; (e) Grunes J, Zhu J, Somorjai GA (2003) Chem Commun 2257–2260; (f) Pasquato L, Pengo P, Scrimin P (2004) J Mater Chem 14:3481–3487; (g) Moreno-Mañas M, Pleixats R (2003) Acc Chem Res 36:638–643

    Google Scholar 

  77. (a) Tang BX, Guo SM, Zhang MB, Li JH (2008) Synthesis 1707–1716; (b) Kantam ML, Yadav J, Laha S, Sreedhar B, Jha S (2007) Adv Synth Catal 349:1938–1942; (c) Rout L, Jammi S, Punniyamurthy T (2007) Org Lett 9:3397–3399

    Google Scholar 

  78. (a) Rout L, Sen TK, Punniyamurthy T (2007) Angew Chem Int Ed 46:5583–5586; (b) Ranu BC, Saha A, Jana R (2007) Adv Synth Catal 349:2690–2696

    Google Scholar 

  79. Zhang J, Zhang Z, Wang Y, Zheng X, Wang Z (2008) Eur J Org Chem 5112–5116

    Google Scholar 

  80. (a) Rossi LM, Machado G (2009) J Mol Cat A Chem 298:69–73; (b) Maity P, Basu S, Bhaduri S, Lahiri GK (2007) Adv Synth Catal 349:1955–1962

    Google Scholar 

  81. Studer M, Blaser HU, Exner C (2003) Adv Synth Catal 345:45–65

    Article  CAS  Google Scholar 

  82. (a) Tamura M, Fujihara H (2003) J Am Chem Soc 125:15742–15743; (b) Jansat S, Gómez M, Philippot K, Muller G, Guiu E, Claver C, Castillon S, Chaudret B (2004) J Am Chem Soc 126:1592–1593; (c) Sawai K, Tatumi R, Nakahodo T, Fujihara H (2008) Angew Chem Int Ed 47:6917–6919; (d) Park KH, Chung YK (2005) Adv Synth Catal 347:854–866; (e) Choudary BM, Ranganath KVS, Pal U, Kantam ML, Sreedhar B (2005), J Am Chem Soc 127:13167–13171

    Article  CAS  Google Scholar 

  83. For a recent review, see: Roy S, Pericàs MA (2009) Org Biomol Chem 7:2669–2677

    Google Scholar 

  84. Li H, Luk YY, Mrksich M (1999) Langmuir 15:4957–4959

    Article  CAS  Google Scholar 

  85. Marubayashi K, Takizawa S, Kawakusu T, Arai T, Sasai H (2003) Org Lett 5:4409–4412

    Article  CAS  Google Scholar 

  86. Belser T, Stohr M, Pfaltz A (2005) J Am Chem Soc 127:8720–8731

    Article  CAS  Google Scholar 

  87. Ono F, Kanemasa S, Tanaka J (2005) Tetrahedron Lett 46:7623–7626

    Article  CAS  Google Scholar 

  88. Belser T, Jacobsen EN (2008) Adv Synth Catal 350:967–971

    Article  CAS  Google Scholar 

  89. Gardimalla HMR, Mandal D, Stevens PD, Yen M, Gao Y (2005) Chem Commun 4432–4434

    Article  Google Scholar 

  90. Hu A, Yee GT, Lin W (2005) J Am Chem Soc 127:12486–12487

    Article  CAS  Google Scholar 

  91. Michalek F, Lagunas A, Jimeno C, Pericàs MA (2008) J Mater Chem 18:4692–4697

    Article  CAS  Google Scholar 

  92. (a) Pastó M, Riera A, Pericàs MA (2002) Eur J Org Chem 2337–2341; (b) Alza E, Bastero A, Jansat S, Pericàs MA (2008) Tetrahedron Asymmetry 19:374–378

    Google Scholar 

  93. Li J, Zhang Y, Han D, Gao Q, Li C (2009) J Mol Cat A Chem 298:31–35

    Article  CAS  Google Scholar 

  94. Luo S, Zheng X, Cheng JP (2008) Chem Commun 5719–5721

    Article  Google Scholar 

  95. Jiang Y, Guo C, Xia H, Mahmood I, Liu H (2008) Ind Eng Chem Res 47:9628–9635

    Article  CAS  Google Scholar 

  96. Helms B, Fréchet JMJ (2006) Adv Synth Catal 348:1125–1148

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miquel A. Pericàs .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Netherlands

About this chapter

Cite this chapter

Jimeno, C., Sayalero, S., Pericàs, M.A. (2010). Covalent Heterogenization of Asymmetric Catalysts on Polymers and Nanoparticles. In: Barbaro, P., Liguori, F. (eds) Heterogenized Homogeneous Catalysts for Fine Chemicals Production. Catalysis by Metal Complexes, vol 33. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3696-4_4

Download citation

Publish with us

Policies and ethics