Skip to main content

Reactivity and Selectivity of Heterogenized Homogeneous Catalysts: Insights from Molecular Simulations

  • Chapter
  • First Online:
Heterogenized Homogeneous Catalysts for Fine Chemicals Production

Part of the book series: Catalysis by Metal Complexes ((CMCO,volume 33))

Abstract

Immobilized metal complexes on nanoporous materials have recently been proposed as a novel class of heterogeneous enantioselective catalyst for epoxidation of unfunctionalized olefins as well as hydrogenation, alkylation, and nitroaldol reactions. The porous hosted materials affect catalytic performance due to a cooperative interaction among the nanoporous solid, immobilizing linker, and metal complex asymmetry. The effects of mesoporous materials and immobilizing agents on chiral catalysis are not well understood, however, the catalysts confined in nanopores show comparable or even higher conversions and enantioselectivity compared to their homogeneous counterparts. This chapter highlights major scientific problems for fundamental understanding and design of heterogenized homogeneous catalysts. It describes in detail the pivotal role of a sound framework in physical theory and molecular modeling in systematic efforts towards better materials and catalytic performance optimization. The common threads of the various topics addressed is the wide range of scales that has to be considered in establishing relations between structure, physicochemical properties, and catalytic performance. Physical theory and modeling employ a variety of methods, encompassing ab-initio calculations, molecular simulations, and the continuum model of transport and reaction in nanoporous materials. We particularly describe how molecular simulations can be used to investigate the origin of enantioselectivity of an anchored metal complex in nanoporous materials. These studies provide new insights into the steric effects that relate to choices of substrate and linker and to the interplay with mesopore confinement. We also bring detailed example of employing molecular simulations to unravel the catalytic properties of metallomacrocyclics for the electrochemical reduction of molecular oxygen in aqueous media. We rationalize the importance of immobilization and show how it relates to the steric communication between the substrate and the metal complex. These fundamental concepts are important for the interpretation of the enantioselectivity of immobilized organometallic catalysts in nanoporous materials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sahimi M, Gavalas GR, Tsotsis TT (1990) Chem Eng Sci 45:1443–502

    Article  CAS  Google Scholar 

  2. Torquato S (2002) Random hetergeneous materials. Springer, New York

    Google Scholar 

  3. Sahimi M (2003) Heterogeneous materials, Part I and Part II. Springer, Heidelberg

    Google Scholar 

  4. Sahimi M (1993) Rev Mod Phys 65:1393–1534

    Article  Google Scholar 

  5. Rajabbeigi N, Elyassi B, Tsotsis TT, Sahimi M (2009) J Mem Sci 335:5–12

    Article  CAS  Google Scholar 

  6. Dubbeldam D, Snurr RQ (2007) Mol simul 33:305–325

    Article  CAS  Google Scholar 

  7. Maginn EJ, Bell AT, Theodorou DN (1993) J Phys Chem 97:4173–4181

    Article  CAS  Google Scholar 

  8. Kärger J, Ruthven DM (1992) Diffusion in zeolites and other microporous solids. Wiley, New York

    Google Scholar 

  9. Breck DW (1974) Zeolite molecular sieves. Wiley, New York

    Google Scholar 

  10. Barrer RM (1982) Hydrothermal chemistry of zeolites. Academic, London

    Google Scholar 

  11. Szostak R (1998) Molecular sieves-principles of synthesis and identification, 2nd edn. Blackie, London

    Google Scholar 

  12. Zhao D, Feng J, Huo Q, Melosh N, Fredrickson GH, Chmelka BF, Stucky GD (1998) Science 279:540

    Article  Google Scholar 

  13. Zhao D, Huo Q, Feng J, Chmelka BF, Stucky GD (1998) J Am Chem Soc 20:6024

    Article  Google Scholar 

  14. Yang Q, Liu J, Zhang L (2009) C Li. J Mater Chem 19:1945–1955

    Article  CAS  Google Scholar 

  15. Yang Q, Han D, Yang H, Li C (2008) Chem Asian J 3:1214–1229

    Article  CAS  Google Scholar 

  16. Noyori R (2002) Angew Chem Int Ed 41:2008–2022

    Article  CAS  Google Scholar 

  17. Trost BM (2004) Proc Natl Acad Sci USA 101:5348–5355

    Article  CAS  Google Scholar 

  18. (a) Knowles WS, Sabacky MJ, Vineyard BD (1968) Chem Commun (London) 1445–1446; (b) Knowles WS, Noyori R (2007) Acc Chem Res 40:1238–1239

    Google Scholar 

  19. Ohkuma T, Ishii D, Takeno H, Noyori R (2000) J Am Chem Soc 122:6510–6511

    Article  CAS  Google Scholar 

  20. Yan YJ, Zhang XM (2006) J Am Chem Soc 128:7198–7202

    Article  CAS  Google Scholar 

  21. Zhang WC, Zhang XM (2006) Angew Chem Int Ed 45:5515–5518

    Article  CAS  Google Scholar 

  22. Sandoval CA, Ohkuma T, Utsumi N, Tsutsumi K, Murata K, Noyori R (2006) Chem Asian J 1:102–110

    Article  CAS  Google Scholar 

  23. Sandoval CA, Ohkuma T, Muniz K, Noyori R (2003) J Am Chem Soc 125:13490–13503

    Article  CAS  Google Scholar 

  24. Wang WB, Lu SM, Yang PY, Han XW, Zhou YG (2003) J Am Chem Soc 125:10536–10537

    Article  CAS  Google Scholar 

  25. Jacobsen EN, Pfaltz A, Yamamoto H (eds) (1999) Comprehensive asymmetric catalysis, vol 1. Springer, Berlin

    Google Scholar 

  26. Noyori R (ed) (1994) Asymmetric catalysis in organic synthesis. Wiley, New York

    Google Scholar 

  27. Ojima I (ed) (1999) Catalytic asymmetric synthesis. Wiley, New York

    Google Scholar 

  28. Mariz R, Luan X, Garri M, Linden A, Dorta R (2008) J Am Chem Soc 130:2172–2173

    Article  CAS  Google Scholar 

  29. Ohkuma T, Tsutsumi K, Utsumi N, Arai N, Noyori R, Murata K (2007) Org Lett 9:255–257

    Article  CAS  Google Scholar 

  30. Ohkuma T, Utsumi N, Tsutsumi K, Murata K, Sandova C, Noyori R (2006) J Am Chem Soc 128:8724–8725

    Article  CAS  Google Scholar 

  31. Balskus EP, Jacobsen EN (2007) Science 317:1736–1740

    Article  CAS  Google Scholar 

  32. Wiesner M, Revell JD, Wennemers H (2008) Angew Chem Int Ed 47:1871–1874

    Article  CAS  Google Scholar 

  33. Yamaguchi T, Matsumoto K, Satio B, Katsuki T (2007) Angew Chem Int Ed 46:4729–4731

    Google Scholar 

  34. Blaser HU, Schmidt E (eds) (2004) Asymmetric catalysis on industrial scale. Wiley, Weinheim

    Google Scholar 

  35. Zhong L, Gao Q, Gao JS, Xiao JL, Li C (2007) J Catal 250:360–364

    Article  CAS  Google Scholar 

  36. Burgemeister K, Franci G, Gego VH, Greiner L, Hugl H, Leitner W (2007) Chem Eur J 13:2798–2804

    Article  CAS  Google Scholar 

  37. Malek K, Jansen APJ, Li C, van Santen RA (2007) J Catal 246:127–135

    Article  CAS  Google Scholar 

  38. Malek K, Li C, van Santen RA (2007) J Mol Catal A Chem 271:98–104

    Article  CAS  Google Scholar 

  39. Zhang H, Wang YM, Zhang L, Gerritsen G, Abbenhuis HCL, van Santen RA, Li C (2008) J Catal 256:226–236

    Article  CAS  Google Scholar 

  40. Lalande G, Guay D, Dodelet JP, Majetich SA, McHenry ME (1997) Chem Mat 9:784–790

    Article  CAS  Google Scholar 

  41. Fournier J, Lalande G, Cote R, Guay D, Dodelet JP (1997) J Electrochem Soc 144:218–226

    Article  CAS  Google Scholar 

  42. Wang H, Cote R, Faubert G, Guay D, Dodelet JP (1999) J Phys Chem B 103:2042–2049

    Article  CAS  Google Scholar 

  43. Wei G, Wainright JS, Savinell RF (2000) J New Mat Electrochem Syst 3:121–129

    CAS  Google Scholar 

  44. Cote R, Lalande G, Guay D, Dodelet JP, Denes G (1998) Electrochem Solid State Lett 145:2411–2418

    CAS  Google Scholar 

  45. Zagal JH (1992) Coord Chem Rev 119:89–136

    Article  CAS  Google Scholar 

  46. Sidik RA, Anderson AB, Subramanian NP, Kumaraguru SP, Popov BN (2006) J Phys Chem B 110:1784–1793

    Google Scholar 

  47. Jain M, Chuo S, Siedle A (2006) J Phys Chem B 110:4179–4185

    Article  CAS  Google Scholar 

  48. Vayner E, Anderson AB (2007) J Phys Chem C 111:9330–9336

    Article  CAS  Google Scholar 

  49. Shi Z, Zhang J (2007) J Phys Chem C 111:7084–7090

    Article  CAS  Google Scholar 

  50. Zagal JH, Paez M, Tanaka AA, dos Santos JR, Linkous C (1992) J Electroanal Chem 339:13–30

    Article  CAS  Google Scholar 

  51. Li C (2004) Catal Rev 46:419

    Article  CAS  Google Scholar 

  52. Xiang S, Zhang Y, Xin Q, Li C (2002) Chem Commun 22:2696

    Article  Google Scholar 

  53. Zhang H, Xiang S, Li C (2005) Chem Commun 1209

    Google Scholar 

  54. Piaggio P, McMorn P, Langham C, Bethel D, Bulman-Page PC, Hancock FE, Hutchings GJ (1998) New J Chem 22:1167

    Article  Google Scholar 

  55. Piaggio P, McMorn P, Murphy D, Bethel D, Bulman-Page PC, Hancock FE, Sly C, Kerton OJ, Hutchings GJ (2000) J Chem Soc Perkin Trans 2:2008

    Google Scholar 

  56. Corma A (2004) Catal Rev Sci Eng 46:369

    Article  CAS  Google Scholar 

  57. McGarrigle EM, Gilheany DG (2005) Chem Rev 105:1563

    Article  CAS  Google Scholar 

  58. Zhang H, Zhang Y, Li C (2006) J Catal 238:369

    Article  CAS  Google Scholar 

  59. Linker T (1997) Angew Chem Int Ed 36:2060

    Article  CAS  Google Scholar 

  60. Jacobsen H, Cavallo L (2001) Chem Eur J 7:800

    Article  CAS  Google Scholar 

  61. Cavallo L, Jacobsen H (2000) Angew Chem Int Ed 39:589

    Article  CAS  Google Scholar 

  62. Khavrutskii IV, Musaev DG, Morokuma K (2003) Inorg Chem 42:2606

    Article  CAS  Google Scholar 

  63. Linde C, Akermark B, Norrby PO, Svensson M (1999) J Am Chem Soc 121:5083

    Article  CAS  Google Scholar 

  64. Cavallo L, Jacobsen H (2004) Inorg Chem 43:2175

    Article  CAS  Google Scholar 

  65. El-Bahraoui J, Wiest O, Feichtinger D, Plattner DA (2001) Angew Chem Int Ed 40:2073

    Article  CAS  Google Scholar 

  66. Dominguez I, Fornes V, Sabater MJ (2004) J Catal 228:92

    Article  CAS  Google Scholar 

  67. Ayala V, Corma A, Iglesias M, Sanchez F (2004) J Mol Catal 221:201

    CAS  Google Scholar 

  68. Alvarez S, Alemany P, Avnir D (2005) Chem Soc Rev 34:313

    Article  CAS  Google Scholar 

  69. Lipkowitz K, Schefzick S (2002) Chirality 14:677

    Article  CAS  Google Scholar 

  70. Alvarez S, Schefzick S, Lipkowitz K, Avnir D (2003) Chem Eur J 9:5832

    Article  CAS  Google Scholar 

  71. Zabrodsky H, Peleg S, Avnir D (1992) J Am Chem Soc 114:7843

    Article  CAS  Google Scholar 

  72. Zabrodsky H, Avnir D (1995) J Am Chem Soc 117:462

    Article  CAS  Google Scholar 

  73. Shi S, Yan L, Yang Y, Fisher-Shaulsky J, Thacher T (2003) J Comput Chem 24:1059

    Article  CAS  Google Scholar 

  74. Mollmann E, Tomlinson P, Holderich WF (2003) J Mol Catal 206:253

    Article  CAS  Google Scholar 

  75. Handgraaf JW, Reek JNH, Bellarosa L, Zerbetto F (2005) Adv Synth Catal 347:792

    Article  CAS  Google Scholar 

  76. Avery KA, Mann R, Norton M, Willock DJ (2003) Topics Catal 25:89

    Article  CAS  Google Scholar 

  77. Cavallo L, Jacobsen H (2003) J Phys Chem 107:5466

    Article  CAS  Google Scholar 

  78. Sears JS, Sherill CD (2006) J Chem Phys 124:144314

    Article  Google Scholar 

  79. Chang S, Galvin JM, Jacobsen EN (1994) J Am Chem Soc 116:6937

    Article  CAS  Google Scholar 

  80. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004) Gaussian 03, ReVision, B01. Gaussian, Wallingford, CT

    Google Scholar 

  81. Zhang H, Li C (2006) Tetrahedron 62:6640

    Article  CAS  Google Scholar 

  82. Finnley NS, Pospisil PJ, Chang S, Palicki M, Konsler RG, Hansen KB, Jacobsen EN (1997) Angew Chem 109:1798

    Article  Google Scholar 

  83. Eikerling MH, Malek K, Wang Q (2008) Catalyst layer modeling: structure, properties, and performance. In: Zhang JJ (ed) PEM fuel cells catalysts and catalyst layers – fundamentals and applications. London, Springer

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kourosh Malek .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Netherlands

About this chapter

Cite this chapter

Malek, K., Van Santen, R.A. (2010). Reactivity and Selectivity of Heterogenized Homogeneous Catalysts: Insights from Molecular Simulations. In: Barbaro, P., Liguori, F. (eds) Heterogenized Homogeneous Catalysts for Fine Chemicals Production. Catalysis by Metal Complexes, vol 33. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3696-4_12

Download citation

Publish with us

Policies and ethics