Skip to main content

Empiricism Without the Senses: How the Instrument Replaced the Eye

  • Chapter
The Body as Object and Instrument of Knowledge

Part of the book series: Studies in History and Philosophy of Science ((AUST,volume 25))

Abstract

The optical instruments developed through the seventeenth century allowed peering into the very far and the very small; a spectacle never before experienced. The telescope, and later the microscope, was now expected to answer fundamental questions and resolve cosmological riddles by direct observation into the foundations of nature. But this ability came at an unexpected price and with unexpected results. For Kepler and Galileo, the new instruments did not offer extension and improvement to the senses; they replaced them altogether. To rely on their authority was to admit that the human eye is nothing but an instrument, and a flawed one at that. Rather than the intellect’s window to the world, the human senses became a part of this world, a source of obscure and unreliable data, demanding uncertain deciphering. Accurate scientific observation meant that we are always wrong.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Kepler 1965 [1610], 22.

  2. 2.

    Kepler’s ulterior motives constitute the crux of Biagioli’s recent reconstruction of this exchange (Biagioli 2006, esp. 33–39). Biagioli queries Kepler’s hasty and enthusiastic reply to Galileo’s request to assess his telescopic observations, when in fact Kepler had not yet seen a telescope or observed personally the celestial phenomena Galileo claimed to have seen. Biagioli claims that the distance between Galileo and Kepler and the partial information Kepler had regarding Galileo’s status in the Florentine court contributed to this exchange. Albeit, one should notice that Kepler’s inability to build a high power telescope was due to specific practical problems concerning lens production and not to lack of theory about how telescopes work and how lenses magnify. Kepler’s embraced Galileo’s telescope as a confirmation of his optical theories and of his proposed observational practice using instruments in preference of a naked eye.

  3. 3.

    Kepler 1965 [1610], 20.

  4. 4.

    Kepler 1965 [1610], 21.

  5. 5.

    Galilei 1989 [1610], 38–39.

  6. 6.

    See Malet 2005, Shea 1972, and van Helden 1974.

  7. 7.

    van Helden 1974, 53.

  8. 8.

    Grassi 1619, 5–6.

  9. 9.

    Grassi 1619, 14.

  10. 10.

    Concerning the significance of the superlunary position of comets see Van Nouhuys 1998. On the difficulties the Jesuits had with Tycho’s cosmology see: Baldini 1992, 217–250; Blackwell 1992, esp. 148–153; Lattis 1994, 94–102, 211–216.

  11. 11.

    Cassirer 1942, 316.

  12. 12.

    Favaro asserts that “the pages of the first part … have corrections and additions in Galileo’s handwriting. A second part … is entirely in Galileo’s writing. The third part in Guiducci’s hand … but there are correction by [Galileo]” and concludes that “the entire discourse may be said to be essentially his work.” Quoted in Drake and O’Malley 1960, xvi–xvii.

  13. 13.

    Galileo 1623, 169.

  14. 14.

    Galilei 1623, 236. “La ricchezza della natura.” In Galilei 1890–1909, 6: 281.

  15. 15.

    Grassi 1619, 11.

  16. 16.

    Grassi 1619, 6.

  17. 17.

    Guiducci 1619, 36–37.

  18. 18.

    Galilei 1890–1909, 2: 277–284. Cf. Dupré 2003, 373.

  19. 19.

    Grassi 1619, 14. Italics added. “Si enim in aliis etiam regionibus eodem tempore eadem stella cometae proxima observaretur, nullum maius atque evidentius optari poterat argumentum, quodemonstraretur nullum aut perexiguam parallaxim cometae fuisse, cum hocabsque ullo instrumento, unico oculorum intuitu, observari posset.” Grassi in Galilei 1890–1909, 6: 31.

  20. 20.

    Guiducci 1619, 40. One should note how much Galileo’s argument is as removed from “opposition to the closed system of the schools,” as Drake presented “The Assayer” in the preface to Drake and O’ Malley, 1960, xxiii. Galileo’s rejection of the parallax is based on proto-Aristotelian concept of the comets as resulting from exuding vapors, and furthermore, preserves “the Aristotelian duality” between heavens and the “elemental sphere.”

  21. 21.

    Grassi 1619, 17.

  22. 22.

    Galileo 1623, 220.

  23. 23.

    Sarsi 1619, 80–81.

  24. 24.

    Grassi 1619, 79.

  25. 25.

    Grassi 1619, 82.

  26. 26.

    Grassi 1619, 14.

  27. 27.

    Galilei 1623, 209.

  28. 28.

    Galilei 1623, 221.

  29. 29.

    Galilei 1623, 321. “Senza il telescipio, l’occhio libero niuna di cotali figure distingue.” Galilei 1890–1909, 6: 359.

  30. 30.

    Galilei 1623, 324.

  31. 31.

    This is a recapitulation of his arguments (including the hairy metaphor) in the Sidereus Nuncius: “The reason for this is that when the stars are observed with the naked eye, they do not show themselves according to their simple and, so to speak, naked size, but rather surrounded by a certain brightness and crowned by twinkling rays … Stars are therefore seen unshorn in the midst of darkness, but daylight can shear them of their hair … The spyglass likewise does the same thing: for first it takes away the borrowed and accidental brightness from the stars and thereupon it enlarges their simple globes.” Galilei 1989 [1610], 57–58.

  32. 32.

    Kepler 1965 [1610], 21–22.

  33. 33.

    Kepler 1937– [1604]; Kepler 2000 [1604]. We will use Ad Vitellionem (1937– [1604]) to refer to the original Latin and Optics (2000 [1604]) to refer to Donahue’s translation.

  34. 34.

    Kepler 2000 [1604], 259.

  35. 35.

    The relation between the camera obscura and the eye is at the heart of the historiographic debate concerning Kepler’s optics. For Straker (1971, and cf. Crombie 1953) the instrument represents Kepler’s novel commitment to the mechanization of the eye and his indebtedness to the artisanal tradition. Kepler’s claim that the locus of images is the retina rather than the crystalline humor, Straker argues, is an immediate consequence of comparing the eye to a camera obscura. Lindberg, in contrast, argues for Kepler’s reliance on the perspectivist tradition, stresses that “only on one occasion did [Kepler] explicitly compared the eye to a camera obscura” (Lindberg 1976, 206). As we claimed above and will argue below, this debate is somewhat misdirected: Kepler’s main motivation in equating the eye and the camera obscura is legitimating the instrument no less than understanding the eye.

  36. 36.

    Galilei 1890–1909, 5: 136–137. Quoted and translated in Biagioli 2006, 190.

  37. 37.

    Cf. Dear 1995, esp. Chapter 2, and Feldhay 2000.

  38. 38.

    Galilei 1890–1909, 5: 59–61. Quoted and discussed in Biagioli 2006, 200–201.

  39. 39.

    Agvilonius 1613, 3. “Continetur omnis Optice triplici fere videndi ratione … triplici etiam modo quo deum creaturae cognoscunt, … comparauit. Prima directa, quae est oculi nostri, sic, ut in rem propositam intendit, cum illa cognitione componitur qua beatorum mentes praesentem Deum, facie ad faciem, ut D. Loquitur Paulus, contemplatur. Altera repercussa, sive earum rerum perceptio, quarum a speculis ad nos imagines revertuntur, cui non absimlis est illa cognitio, qua Deum per fidem in rebus creatis, veluti quodam speculo aut aenigmate videmus. Tertia denique, quam infractam vocant, ea est, qua rerum species per dissimilia diaphana transmissae, et ab iisdem quasi deformatae ac fractae in oculos immittuntur. Sic Ethnici divinitatis notionem aliquam, sed multis erroribus vitiatam, naturae solius lumine affecuti sunt.”

  40. 40.

    For the import of the camera obscura in the study of Kepler’s optics see f.n. 35.

  41. 41.

    Kepler 2000 [1604], 56.

  42. 42.

    See Aristotle 1984, Problems Bk 15, Ch. 6, 911b1, 2:1417; Pecham 1970, 67. See also Lindberg 1968, 1969; Thro 1996, 20–54.

  43. 43.

    Cf. Lindberg 1969, 303 ff. For Maurolyco on pinhole images see Zik and Hon 2007.

  44. 44.

    Pecham 1970, 70–71.

  45. 45.

    See Lindberg 1985, esp. 37–40; and Lindberg 1984, esp. 134–135, also Zik and Hon 2007, esp. 561.

  46. 46.

    Kepler 1937– [1604], 41–42.

  47. 47.

    Kepler 1937– [1604], 41–42.

  48. 48.

    This is the central argument of Lindberg 1976.

  49. 49.

    For the role of these visual impressions in medieval spirituality see: Park 1998, 254–271; Hamburger 2000, 47–69.

  50. 50.

    Pecham 1970, 161.

  51. 51.

    Kepler 2000 [1604], 45. Cf. Smith 1981.

  52. 52.

    Alpers 1983, 41.

  53. 53.

    Alberti 1972, 41.

  54. 54.

    Grosseteste 1912, 60.

  55. 55.

    Bacon 1983, 7. “species sit similes agenti et generanti eam in essential et diffinitione.” Bacon 1983, 7. For an extensive treatment of species in medieval optical theory see especially: Smith 1981; Spruit 1994. Tachau 1982 provides an authoritative treatment of the issues involved in medieval theory of species, and also Tachau 1988. See also Denery II 2005, esp 82–96.

  56. 56.

    Smith 1981, 569.

  57. 57.

    For the teleological nature of the Aristotelian theory of perception cf. Descartes 1998, 159–161.

  58. 58.

    Pecham 1970, 121. Italics added.

  59. 59.

    Pecham 1970, 121.

  60. 60.

    Kepler 2000 [1604], 78.

  61. 61.

    Kepler 2000 [1604], 184.

  62. 62.

    For Kepler’s mathematization of light cf. Gal and Chen-Morris 2005.

  63. 63.

    We discuss in detail Kepler’s transformation of optics from a teleological theory of human vision into a causal theory of the production of the images by light, as well as its far reaching epistemological ramifications, in Gal and Chen-Morris 2010 (in press).

  64. 64.

    Aristotle 1984, Posterior analytics, II, 19, 100a4–15, 165–166.

  65. 65.

    Kepler 2000 [1604], 336.

  66. 66.

    Kepler 2000 [1604], 298.

  67. 67.

    Kepler 2000 [1604], 298.

  68. 68.

    Kepler 2000 [1604], 57.

  69. 69.

    Kepler 1937- [1604], 2:6.

  70. 70.

    Galilei 1623, 326.

  71. 71.

    Galilei 1623, 319–320.

  72. 72.

    Galilei 1623, 322–323. “Figuratevi una determinate grandezza d’una capellatura; nel mezo della quale se voi intenderete essere un piccolissimo corpo luminoso, perderà la sua figura, coronato di troppo lunghi crini … il telescopio, accrescendo la stella ma non la chioma, fa che, dove prima il piccolissimo disco tra sì ampio fulgore era impercettibile … si può distinguere ed assai ben figurare.” Galilei 1890–1909; 6 360–361.

  73. 73.

    Galilei 1623, 183–184.

  74. 74.

    Scheiner 1619, 2.

  75. 75.

    Galilei 1623, 209. Antoni Malet writes: “In our understanding of them, telescopes always work by producing geometrical optical images, real or virtual, regardless of whether or not any observer is peering through them. From our theoretical point of view, it does not matter whether an eye, or a screen, or just empty space gets the light rays coming out of the ocular lens, because the telescope always produces one geometrical image. However, in Kepler’s time, and up to the last decades of the seventeenth century, when somebody looked through a telescope, it was not understood to work by producing images similar to the pictures projected upon screens” (Malet 2005, 239). We differ from Malet in arguing that in spite of the absence of theoretical grounding, the independence of the geometrical image from the observer is exactly the position Galileo formulates and defends.

  76. 76.

    Galileo 1623, 225.

  77. 77.

    Dupré 2005. See also Zik and Van Helden 2003.

  78. 78.

    Faber in Galileo 1623, 154. “[An], velut in vetulo languentes corpore ocelli, Mente tamen valida, per duo vitra vident, Forte senescenti tu sic OCULARIA mundo Aptasti, mirae dexteritatis opus?” Faber in Galilei 1890–1909, 6: 205.

  79. 79.

    Kepler 1937– [1619], 6: 304.

  80. 80.

    Galilei 1623, 212–213.

  81. 81.

    Galilei 1623, 311.

  82. 82.

    Galilei 1623, 311–312.

  83. 83.

    Hooke 1665, xvii–xviii.

  84. 84.

    Hooke 1665, xvii.

  85. 85.

    Hooke 1665, xvii.

  86. 86.

    Hooke 1674, 8.

  87. 87.

    Kepler 2000 [1604], 180.

References

  • Alberti, Leon Battista. 1972. On Painting and on Sculpture: The Latin Texts of De Pictura and De Statua, trans and eds, introduction and notes by C. Grayson. London: Phaidon.

    Google Scholar 

  • Alpers, Svetlana. 1983. The Art of Describing: Dutch Art in the Seventeenth Century. Chicago: University of Chicago Press.

    Google Scholar 

  • Aristotle. 1984. Problems; posterior analytics. In The Complete Works of Aristotle, ed. Jonathan Barnes. Princeton: Princeton University Press.

    Google Scholar 

  • Agvilonius, Franciscus. 1613. Opticorum libri sex philosophis iuxta ac mathematicis utiles. Antwerp: Plantin Press, widow and sons of J. Moretus.

    Google Scholar 

  • Bacon, Roger. 1983. Roger Bacon’s natural philosophy: a critical edition. Incl. De multiplicatione specierum and De speculis comburentibus, trans. and ed. David C. Lindberg. Oxford: Oxford University Press.

    Google Scholar 

  • Baldini, Ugo. 1992. Legem impone subactis: Studi su filosofia e scienza dei gesuiti in Italia, 1540–1632. Rome: Bulzon.

    Google Scholar 

  • Biagioli, Mario. 2006. Galileo’s Instruments of Credit: Telescopes, Images, Secrecy. Chicago: The University of Chicago Press.

    Book  Google Scholar 

  • Blackwell, Richard. 1992. Galileo, Bellarmine, and the Bible. Notre Dame: University of Notre Dame Press.

    Google Scholar 

  • Cassirer, Ernst. 1942. The Influence of language upon the development of scientific thought. The Journal of Philosophy 39,12: 309–327.

    Article  Google Scholar 

  • Crombie, Alistair C. 1953. Robert Grosseteste and the Origins of Experimental Science 1100–1700. Oxford: Clarendon.

    Google Scholar 

  • Dear, Peter. 1995 Discipline & Experience: the Mathematical Way in the Scientific Revolution. Chicago: University of Chicago Press.

    Book  Google Scholar 

  • Denery II, Dallas G. 2005. Seeing and Being Seen in the Later Medieval World: Optics, Theology and Religious Life. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Descartes, René. 1998. The World and Other Writing, ed. and trans. Stephen Gaukroger. Cambridge: Cambridge University Press.

    Google Scholar 

  • Drake, Stillman and O’Malley, C.D. (eds. and trans.). 1960. The Controversy on the Comets of 1618: Galileo Galilei, Horatio Grassi, Mario Guiducci, Johann Kepler. Philadelphia: University of Pennsylvania Press.

    Google Scholar 

  • Dupré, Sven. 2003. Galileo’s telescope and celestial light. Journal for the History of Astronomy 34, 4: 369–399.

    Google Scholar 

  • Dupré, Sven. 2005. Ausonio’s mirrors and Galileo’s lenses: the telescope and sixteenth-century practical optical knowledge. Galilaeana: Journal of Galilean Studies 2: 145–180.

    Google Scholar 

  • Feldhay, Rivka. 2000. Mathematical entities in scientific discourse: Paulus Gulding and his Dissertatio de Motu Terrae. In Biographies of Scientific Objects, ed. Lorraine Daston. Chicago: University of Chicago Press.

    Google Scholar 

  • Gal, Ofer and Chen-Morris, Raz. 2005. The archaeology of the inverse square law part I: Metaphysical images and mathematical practices. History of Science 43.4: 391–414.

    Google Scholar 

  • Gal, Ofer and Chen-Morris, Raz. 2010 (in press). Baroque optics and the disappearance of the observer: From Kepler’s optics to Descartes’ doubt. Journal of the History of Ideas.

    Google Scholar 

  • Galilei, Galileo. 1623. Il Saggiatore (The Assayer). Rome: Giacomo Mascardi. In The Controversy on the comets of 1618: Galileo Galilei, Horatio Grassi, Mario Guiducci, Johann Kepler, Drake and O’Malley, eds. 1960. And trans. Stillman Drake and C.D. O’Malley. Philadelphia: University of Pennsylvania Press.

    Google Scholar 

  • Galilei, Galileo. 1890–1909. Le Opere di Galileo Galilei (20 vols) 1890–1909, ed. Favaro, A. Florence: Barbera.

    Google Scholar 

  • Galilei, Galileo. 1989 (1610). Sidereus Nuncius, or, The Sidereal Messenger, ed. and trans. Albert Van Helden. Chicago: University of Chicago Press.

    Google Scholar 

  • Grassi, Horatio. 1619. Tribus Cometis Anni M. DC. XVIII. Disputatio Astronomica. Rome: Iacobi Mascardi. In The Controversy on the comets of 1618: Galileo Galilei, Horatio Grassi, Mario Guiducci, Johann Kepler, Drake and O’Malley, eds. 1960. And trans. Stillman Drake and C.D. O’Malley. Philadelphia: University of Pennsylvania Press.

    Google Scholar 

  • Grosseteste, Robert. 1912. De lineis angulis et figuris. In Die Philosophischen Werke des Robert Grosseteste, Bischofs von Lincoln, ed. Ludwig Baur. Beiträge zur Geschichte der Philosophie des Mittelalters. Münster i. W.: Aschendorff.

    Google Scholar 

  • Guiducci, Mario. 1619. Discorso Delle Comete. Firenze: Pietro Cecconcelli. In The Controversy on the comets of 1618: Galileo Galilei, Horatio Grassi, Mario Guiducci, Johann Kepler, 1960, eds. and trans. Stillman Drake and C.D. O’Malley. Philadelphia: University of Pennsylvania Press.

    Google Scholar 

  • Hamburger, Jeffrey F. 2000. Seeing and believing: the suspicion of sight and the authentication of vision in late medieval art. In Imagination und Wirklichkeit: Zum Verhältnis von mentalen und realen Bildern in der Kunst der Frühen Neuzeit, eds. Alessandro Nova and Klaus Krüger, 47–69. Mainz: Von Zabern.

    Google Scholar 

  • Hooke, Robert. 1665. Micrographia. London: John Martin.

    Google Scholar 

  • Hooke, Robert. 1674. Animadversions on the... Machina Coelestis of... Johannes Hevelius. London: John Martin.

    Google Scholar 

  • Kepler, Johannes. 1937. Gesammelte Werke 1571–1630, eds. Walther von Dyck and Max Caspar München: C. H. Beck.

    Google Scholar 

  • Kepler, Johannes. 1965 [1610]. Kepler’s Conversation with Galileo’s Sidereal Messenger, trans. Edward Rosen. New York: Johnson Reprint Corp.

    Google Scholar 

  • Kepler, Johannes. 2000 [1604]. Optics: Paralipomena to Witelo and the Optical Part of Astronomy, trans. William H. Donahue. Santa Fe, NM: Green Lion Press.

    Google Scholar 

  • Lattis, James. 1994. Between Copernicus and Galileo. Chicago: University of Chicago Press.

    Book  Google Scholar 

  • Lindberg, David C. 1976. Theories of Vision from Al-Kindi to Kepler. Chicago: University of Chicago Press.

    Google Scholar 

  • Lindberg, David C. 1968. The theory of pinhole images from antiquity to the thirteenth century. Archive for the History of Exact Sciences 5: 154–176.

    Article  Google Scholar 

  • Lindberg, David C. 1969. The theory of pinhole images in the fourteenth century. Archive for History of Exact Sciences 6: 299–328.

    Article  Google Scholar 

  • Lindberg, David C. 1984. Optics in 16th century Italy. In Novità Celsti e Crisi del Sapere, ed. P. Galuzzi, 131–148. Firenze: Giunti Barbera.

    Google Scholar 

  • Lindberg, David C. 1985. Laying the foundations of geometrical optics: Maurolico, Kepler, and the Medieval Tradition. In The Discourse of Light from the Middle Ages to the Enlightenment. Los Angeles: William Andrews Clark Memorial Library, UCLA 1–65.

    Google Scholar 

  • Malet, Antoni. 2005. Early Conceptualizations of the telescope as an optical instrument. Early Science and Medicine 10, 2: 237–262.

    Article  Google Scholar 

  • Park, Katherine. 1998. Impressed images: reproducing wonders. In Picturing Science and Producing Art, eds. Caroline A. Jones and Peter Galison with Amy Slaton, 254–271. New York and London: Routledge.

    Google Scholar 

  • Pecham, John. 1970. John Pecham and the Science of Optics: Perspectiva Communis. trans. and ed. David Lindberg. Madison: University of Wisconsin Press.

    Google Scholar 

  • Sarsi Sigensano, Lothario. 1619. Libra Astronomica ac Philosophica. Perugia: Marci Naccarini. In The Controversy on the comets of 1618: Galileo Galilei, Horatio Grassi, Mario Guiducci, Johann Kepler, 1960, eds. and trans. Stillman Drake and C.D. O’Malley. Philadelphia: University of Pennsylvania Press.

    Google Scholar 

  • Scheiner, Christoph. 1619. Reprinted 1652. Oculus, hoc est, fundamentum opticum. Innsbruck, London.

    Google Scholar 

  • Shea, William R. 1972. Galileo’s Intellectual Revolution. London: Macmillan. Sigensano, Lothario Sarsio. 1619. Libra astronomica ac philosophica qva Galilaei Galilaei opiniones de cometis... examinantur. Perusiae: Marci Naccarini.

    Google Scholar 

  • Smith, A. Mark. 1981. Getting the big picture in perspectivist optics. Isis 72, 568–589.

    Article  Google Scholar 

  • Spruit, Leen. 1994. Species Intelligibilis: From Perception to Knowledge (2 vols.) Leiden, New York, Köln: E.J. Brill.

    Google Scholar 

  • Straker, Stephen. 1971. Kepler’s Optics. Unpublished Dissertation. Indiana University.

    Google Scholar 

  • Tachau, Katherine. 1982. The problem of the species in Medio at Oxford in the generation after Ockham. Medieval Studies 44, 394–443.

    Google Scholar 

  • Tachau, Katherine. 1988. Vision and Certitude in the Age of Ockham: Optics, Epistemology and the Foundations of Semantics, 1250–1345. Leiden, New York, Köln: E. J. Brill.

    Google Scholar 

  • Thro, E. Broydrick. 1996. Leonardo’s early work on the pinhole camera: the astronomical heritage of Levi ben Gerson. Achademia Leonardi Vinci 9: 20–54.

    Google Scholar 

  • Van Helden, Albert. 1974. The telescope in the seventeenth century. Isis 65.1.

    Google Scholar 

  • Van Nouhuys, Tabitta. 1998. The Age of Two-Faced Janus. Leiden: Brill.

    Google Scholar 

  • Zik, Yaakov and Giora Hon. 2007. Geometry of light and shadow: Francesco Maurolyco (1494–1575) and the pinhole Camera. In Annals of Science 64: 4, 549–578.

    Google Scholar 

  • Zik, Yaakov and Albert van Helden. 2003. “Between Discovery and Disclosure.” In Beretta, Marco et al., Musa Musaei: Studies on Scientific Instruments and Collections in Honour of Mara Miniati. Firenze: L. S. Olschki, 173–190.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Gal, O., Chen-Morris, R. (2010). Empiricism Without the Senses: How the Instrument Replaced the Eye. In: Wolfe, C.T., Gal, O. (eds) The Body as Object and Instrument of Knowledge. Studies in History and Philosophy of Science, vol 25. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3686-5_7

Download citation

Publish with us

Policies and ethics