Skip to main content

Bioaccumulation and Biotransformation of Heavy Metals

  • Chapter
Bioremediation Technology

Abstract

The strategy for increasing and improving the efficiency of remediation techniques is to increase the bioaccumulation and biotransformation potential of plant and microbes for detoxification of toxic metals. With an increase in anthropological practices, more and more toxic metal ions are being added to the natural environment disrupting the ecosystem. Metals like Cd, Pb, Cr, As etc. when present in high concentrations in soil show potential toxic effects on overall growth and metabolism of plants and microbes (Yadav et al., 2009; Juwarkar et al., 2008). Bioaccumulation of such toxic metals in the plants poses a risk to human and animal health. Removal of excess of metal ions from the contaminated site is brought about by chemical as well as biological means. However, the existence of many classes and type of chemical species make the removal of the toxic metals from the environment very complicated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alkorta, I., Hemandez-Allica, J., Becerril, J.M., Amezaga, I., Albizu, I. and Garbisu, I. (2004). Recent findings on the phytoremediation of soils contaminated with environmentally toxic heavy metals and metalloids such as zinc, cadmium, lead and arsenic. Environ. Sci. Biotechnol., 3: 71-90.

    Article  CAS  Google Scholar 

  • Baker, A.J.M. and Brooks, R.R. (1989). Terrestrial higher plants which hyperaccumulate metallic elements: A review of their distribution, ecology and photochemistry. Biorecovery, 1: 81-126.

    CAS  Google Scholar 

  • Bender, C.L., Malvick, D.K., Conway, K.E., George, S. and Pratt, P. (1990). Characterization of pXV10A, a copper resistance plasmid in Xanthomonas campestris pv. vesicatoria. Appl. Environ. Microbiol., 56: 170-175.

    Google Scholar 

  • Blaylock, M.J., Salt, D.E., Duschenkov, S., Zakarova, O., Gussmann, C., Kapulnik, Y., Ensley, B.D. and Raskin, I. (1997). Enhanced accumulation of lead in Indian mustard by soil applied chelating agents. Environ. Sci. Technol., 31: 860-865.

    Article  Google Scholar 

  • Brewer, E.P., Saunders, A.J., Angle, J.S., Chaney, R.L. and Macintosh, M.S. (1999). Somatic hybridization between the zinc accumulator Thlaspi caerulescens and Brassica napus. Theor. Appl. Genet., 99: 761-771.

    Article  CAS  Google Scholar 

  • Brim, H., McFarlan, S.C., Fredrickson, J.K., Minton, K.W., Zhai, M., Wackett, L.P. and Daly, M.J. (2000). Engineering Deinococcus radiodurans for metal remediation in radioactive mixed waste environments. Nature Biotechnol., 18: 85-90.

    Article  CAS  Google Scholar 

  • Broadhurst, C.L., Chaney, R.L., Angle, J.S., Maugel, T.K., Erbe, E.F. and Murphy, C.A. (2004). Simultaneous hyperaccumulation of nickel, manganese, and calcium in Alyssum leaf trichomes. Environ. Sci. Technol., 38: 5797-5802.

    Article  CAS  Google Scholar 

  • Bruins, M.R., Kapil, S. and Oehme, F.W. (2000). Microbial resistance to metals in the environment. Ecotoxicol. Environ. Safety, 45: 198-207.

    Article  CAS  Google Scholar 

  • Chaney, R.L., Malik, M., Li, Y.N., Brown, S.L., Brewer, E.P., Angle, J.S. and Baker, A.J.M. (1997). Phytoremediation of soil metals. Curr. Opin. Biotechnol., 8: 279284.

    Article  Google Scholar 

  • Chang, Y-J., Peacock, A.D., Long, P.E., Stephen, J.R., McKinley, J.P., MacNaughton, S.J., Hussain, A.K.M.A., Saxton, A.M. and White, D. (2001). Diversity and characterization of sulfate-reducing bacteria in groundwater at a uranium mill tailings site. Appl Environ Microbiol., 67: 3149-3160.

    Article  CAS  Google Scholar 

  • Chen, J., Huang, J.W., Casper, T. and Cunningham, S.D. (1997). Arabidopsis as a model system for studying lead accumulation and tolerance in plants. In: Kruger, E.L. (ed.), Phytoremediation of soil and water contaminants. American Chemical Society, Washington, pp. 264-273.

    Chapter  Google Scholar 

  • Clemens, S. (2001). Molecular mechanisms of plant metal hoemostatsis. Planta., 212: 475-486.

    Article  CAS  Google Scholar 

  • Clemens, S., Palmgren, M.G. and Kramer, U. (2002). A long way ahead: Understanding and engineering plant metal accumulation. Trends Plant Sci., 7: 309-314.

    Article  CAS  Google Scholar 

  • Cobbett, C. and Goldsbrough, P. (2002). Phytochelatins and metallothioneins: Roles in heavy metal detoxification and homeostasis. Ann. Rev. Plant Physiol. Plant Mol. Biol, 53: 159-182.

    CAS  Google Scholar 

  • Cunningham, S.D., Berti, W.R. and Huang, J.W. (1995). Phytoremediation of contaminated soils. Trends Biotechnol., 13: 393-397.

    CAS  Google Scholar 

  • Dhankher, O.P., Li, Y., Rosen, B.P., Shi, J., Salt, D., Senecoff, J.F., Sashti, N.A. and Meagher, R.B. (2002). Engineering tolerance and hyperaccumulation of arsenic in plants by combining arsenate reductase and -glutamylcysteine synthetase expression. Natur. Biotechnol., 20: 1140-1145.

    Article  CAS  Google Scholar 

  • Diels, L., Van Roy, S., Mergeay, M., Doyen, W., Taghavi, S. and Leysen, R. (1993). Immobilization of bacteria in composite membranes and development of tubular membrane reactors for heavy metal recuperation. In: Peterson, R. (ed.), Effective membrane processes: new perspectives. Kluwer Academic Publishers, Dordrecht, The Netherlands, pp. 275-293.

    Google Scholar 

  • Dondon, M.G., De Vathaire, F., Quenel, P. and Frery, N. (2005). Cancer mortality during the 1968-1994 period in a mining area in France. Eur. J. Cancer Prev., 14: 297-301.

    Article  Google Scholar 

  • Gratao, P.L., Prasad, M.N.V., Cardoso, P.F., Lea, P.J. and Azevedo, R.A. (2005). Phytoremediation: Green technology for the clean-up of toxic metals in the environment. Braz. J. Plant Physiol., 17: 53-64.

    Article  CAS  Google Scholar 

  • Grichko, V.P., Filby, B. and Glick, B.R. (2000). Increased ability of transgenic plants expressing the enzyme ACC deaminase to accumulate Cd, Co, Cu, Ni, Pb and Zn. J. Biotechnol., 81: 45-53

    Article  CAS  Google Scholar 

  • Guerinot, M.L. and Eide, D. (1999). Zeroing in on zinc uptake in yeast and plants. Curr. Opin. Plant Biol., 2: 244-249.

    Article  CAS  Google Scholar 

  • Hartley-Whitaker, J., Woods, C. and Meharg, A.A. (2002). Is differential phytochelatin production related to decreased arsenate influx in arsenate tolerant Holcus lanatus? New Phytol, 155: 219-225.

    Article  CAS  Google Scholar 

  • Howden, R., Goldsborough, P.B., Anderson, C.R. and Cobbett, C.S. (1995). Cadmium- sensitive, cad1 mutants of Arabidopsis thaliana are phytochelatin deficient. Plant Physiol, 107: 1059-1066.

    Article  CAS  Google Scholar 

  • Jambhulkar, H.P. and Juwarkar, A.A. (2009). Assessment of bioaccumulation of heavy metals by different plant species grown on fly ash dump. Ecotoxic. Environ. Safet., 72: 1122-1128.

    Article  CAS  Google Scholar 

  • Joshi, P.M. and Juwarkar, A.A. (2009). In vivo studies to elucidate the role of extracellular polymeric substances from Azotobacter in immobilization of heavy metals. Environ. Sci. Tech, 43: 5884-5889.

    Article  CAS  Google Scholar 

  • Juwarkar, A.A. (1988). Bioaccumulation of zinc by penicillium sp. Currt. Sci., 57: 251.

    CAS  Google Scholar 

  • Juwarkar, A.A., Nair, A., Dubey, K.V., Singh, S.K. and Devotta, S. (2007). Biosurfactant technology for remediation of cadmium and lead contaminated soils. Chemosphere, 68: 1996-2002.

    Article  CAS  Google Scholar 

  • Juwarkar, A.A., Yadav, S.K., Kumar, P. and Singh, S.K. (2008). Effect of biosludge and biofertilizer amendment on growth of Jatropha curcas in heavy metal contaminated soils. Environ. Monit. Assess., 145: 7-15.

    Article  CAS  Google Scholar 

  • Kawashima, C.G., Noji, M., Nakamura, M., Ogra, Y., Suzuki, K.T. and Saito, K. (2004). Heavy metal tolerance of transgenic tobacco plants over-expressing cysteine synthase. Biotech. Lett., 26: 153-157.

    Article  CAS  Google Scholar 

  • Kneer, R. and Zenk, M.H. (1992). Phytochelatins protect plant enzymes from heavy metal poisoning. Phytochemistry, 31: 2663-2667.

    Article  CAS  Google Scholar 

  • Korshunova, Y.O., Eide, D., Clark, W.G., Guerinot, M.L. and Pakrasi, H.B. (1999). The IRT1 protein from Arabidopsis thaliana is a metal transporter with a broad substrate range. Plant Mol. Biol., 40: 37-44.

    Article  CAS  Google Scholar 

  • Kumar, G.P., Yadav, S.K., Thawale, P.R., Singh, S.K. and Juwarkar, A.A. (2008). Growth of Jatropha curcas on heavy metal contaminated soil amended with industrial wastes and Azotobacter: A greenhouse study. Biores. Technol., 99: 2078-2082.

    Article  CAS  Google Scholar 

  • Lasat, M.M. (2002). Phytoextraction of toxic metals: A review of biological mechanisms. J. Environ. Qual., 31: 109-120.

    Article  CAS  Google Scholar 

  • Lee, S., Moon, J.S., Ko, T.S., Petros, D., Goldsbrough, P.B. and Korban, S.S. (2003b). Over-expression of Arabidopsis phytochelatin synthase paradoxically leads to hypersensitivity to cadmium stress. Plant Physiol., 131: 656-663.

    Article  CAS  Google Scholar 

  • Lloyd, J.R., Mabbett, A.N., Williams, D.R. and Macaskie, L.E. (2001). Metal reduction by sulphate-reducing bacteria: Physiological diversity and metal specificity. Hydrometallurgy, 59: 327-337.

    Article  CAS  Google Scholar 

  • Lopez-Millan, A.F., Ellis, D.R. and Grusak, M.A. (2004). Identification and characterization of several new members of the ZIP family of metal ion transporters in Medicago truncatula. Plant mol. Biol., 54: 583-596.

    Article  CAS  Google Scholar 

  • Macaskie, L.E. and Dean, A.C.R. (1990). Metal sequestering biochemicals. In: Volesky, B. (ed). Biosorption of heavy metals. CRC Press, Boca Raton, Fla, 200-248.

    Google Scholar 

  • McNair, M.R., Tilstone, G.H. and Smith, S.S. (2000). The genetics of metal tolerance and accumulation in higher plants. In: Terry, N. and Banuelos, G. (eds), Phytoremediation of Contaminated Soil and Water. Lewis Publishers, Boca Raton, 235-250.

    Google Scholar 

  • Nair, A., Juwarkar, A.A. and Devotta, S. (2008). Study of speciation of metals in an industrial sludge and evaluation of metal chelators for their removal. J. Hazad. Mater, 52: 545-553.

    Article  Google Scholar 

  • Nair, A., Juwarkar, A.A. and Singh, S.K. (2007). Production and characterization of siderophores and its application in arsenic removal from contaminated soil. Water Air and Soil Pollut. 180: 199-212.

    Article  CAS  Google Scholar 

  • Nies, D.H. (1999). Microbial heavy-metal resistance. Appl. Microbiol. Biotechnol., 51: 730-750.

    Article  CAS  Google Scholar 

  • Niggemyer, A., Spring, S., Stackebrandt, E. and Rosenzweig, R.F. (2001). Isolation and characterization of a novel As(V)-reducing bacterium: Implications for arsenic mobilization and the genus Desulfitobacterium. Appl. Environ. Microbiol., 67: 5568-5580.

    Article  CAS  Google Scholar 

  • Papoyan, A. and Kochian, L.V. (2004). Identification of Thlaspi caerulescens genes that may be involved in heavy metal hyperaccumulation and tolerance. Characterization of a novel heavy metal transporting ATPase. Plant Physiol., 136: 3814-3823.

    CAS  Google Scholar 

  • Pence, N.S., Larsen, P.B., Ebbs, S.D., Letham, D.L., Lasat, M.M., Garvin, D.F., Eide, D. and Kochian, L.V. (2000). The molecular physiology of heavy metal transport in zinc/cadmium hyperaccumulator Thlaspi caerulescens. Proc. Nat. Acad. Sci. USA, 97: 4956-4960.

    Article  CAS  Google Scholar 

  • Prasad, M.N.V. (2005). Nickelophilous plants and their significance in phytotechnologies. Braz. J. Plant. Physiol, 17: 113-128.

    Article  CAS  Google Scholar 

  • Raskin, I. (1996). Plant genetic engineering may help with environmental cleanup. Proc. Nat. Acad. Sci. USA, 93: 3164-3166.

    Article  CAS  Google Scholar 

  • Reeves, R.D. and Baker, A.J.M. (2000). Metal-accumulating plants. In: Raskin, I., Ensley, B.D. (eds), Phytoremediation of Toxic Metals. John Wiley, New York, 193-229.

    Google Scholar 

  • Santini, J.M., Sly, L.I., Schnagl, R.D. and Macy, J.M. (2000). A new chemolitoautotrophic arsenite-oxidizing bacterium isolated from a gold-mine: Phylogenetic, physiological, and preliminary biochemical studies. Appl. Environ. Microbiol., 66, 92-97.

    Article  CAS  Google Scholar 

  • Schat, H., Llugany, M., Voojis, R., Harley-Whitaker, J. and Bleeker, P.M. (2002). The role of phytochelatins in constitutive and adaptive heavy metal tolerances in hyperaccumulator and non-hyperaccumulator metallophytes. J. Exp. Bot., 53: 2381-2392.

    Article  CAS  Google Scholar 

  • Shanker, A.K., Djanaguiraman, M., Sudhagar, R., Jayaram, K. and Pathmanabhan, G. (2004). Expression of metallothioneins 3-like protein mRNA in sorghum cultivars under chromium(VI) stress. Curr. Sci., 86: 901-902.

    CAS  Google Scholar 

  • Silver, S. (1996). Bacterial resistances to toxic metal ions—a review. Gene, 179, 9-19.

    Article  CAS  Google Scholar 

  • Srivastava, S., Prakash, S. and Srivastava, M.M. (1999). Fate of trivalent chromium in presence of organic acids. Chem. Spec. Bioavail., 10: 147-150.

    Article  Google Scholar 

  • Stolz, J. and Oremland, R. (1999). Bacterial respiration of arsenic and selenium. FEMS Microbiol. Rev., 23: 615-627.

    Article  CAS  Google Scholar 

  • Strandberg, G.W., Shumate II, S.E. and Parrott Jr., J.R. (1981). Microbial cells as biosorbents for heavy metals: Accumulation of uranium by Saccharomyces cerevisiae and Pseudomonas aeruginosa. Appl. Environ. Microbiol., 41: 237-245.

    CAS  Google Scholar 

  • Tabak, H.H., Lens, P., van Hullebusch, E.D. and Dejonghe, Eric D. (2005). Developments in bioremediation of soils and sediments polluted with metals and radionuclides - 1. Microbial processes and mechanisms affecting bioremediation of metal contamination and influencing metal toxicity and transport. Rev. Environ. Sci. and Bio/Technol., 4: 115-156.

    CAS  Google Scholar 

  • Tripathi, R.D., Srivastava, S., Mishra, S., Singh, N., Tuli, R., Gupta, D.K. and Maathuis, F.J.M. (2007). Arsenic hazards: Strategies for tolerance and remediation by plant. Trends in Biotechnol., 25: 158-165.

    Article  CAS  Google Scholar 

  • Valls, M., Atrian, S., de Lorenzo, V. and Fernández, L.A. (2000). Engineering outer-membrane proteins in Pseudomonas putida for enhanced heavy-metal bioadsorption. J. Inorg. Biochem., 79: 219-223.

    Article  CAS  Google Scholar 

  • Van Huysen, T., Terry, N. and Pilon-Smits, E.A.H. (2004). Exploring the selenium phytoremediation potential of transgenic Indian mustard over-expressing ATP sulfurylase or cystathionine -synthase. Int. J. Phytoremed., 6: 111-118.

    Article  Google Scholar 

  • Wagner-Dobler, I., Lunsdorf, H., Lubbehusen, T., von Canstein, H. and Li, Y. (2000). Structure and species compositions of mercury-reducing biofilms. Appl. Environ. Microbiol, 66, 4559-4563.

    Article  CAS  Google Scholar 

  • Yadav, S.K., Juwarkar, A.A., Kumar, G.P., Thawale, P.R., Singh, S.K. and Chakrabarti, T. (2009). Bioaccumulation and phyto-translocation of arsenic, chromium and zinc by Jatropha curcas L.: Impact of dairy sludge and biofertilizer. Biores. Technol., 100: 4616-4622.

    Google Scholar 

  • Yang, M.N., Wang, J., Wang, S.H. and Xu, L.L. (2003). Salicylic acid induce aluminum tolerance by modulation of citrate efflux from roots of Cassia tora L. Planta., 217: 168-174.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Capital Publishing Company

About this chapter

Cite this chapter

Juwarkar, A.A., Yadav, S.K. (2010). Bioaccumulation and Biotransformation of Heavy Metals. In: Fulekar, M.H. (eds) Bioremediation Technology. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3678-0_9

Download citation

Publish with us

Policies and ethics