Skip to main content

Recombinant DNA Technology for Bioremediation of Pollutants

  • Chapter
Bioremediation Technology

Abstract

Pollutants are artificially generated by-products of modern human world and most of them are known to have little to severe ecotoxicological impact on nature. The growing awareness of environmental pollution and its direct or indirect impact on ecosystem warrants development of cost effective, efficient and environmentally safe methods. The excessive use of chemicals in every walk of life due to unabated industrialization of modern society and growing market of cheap but harmful products due to globalization are disturbing the homeostatic balance of nature and its environment. Being the most intelligent creature of the universe, it is the prime duty of human beings to keep nature free of pollutants and provide environmentally safe ambience not only to the society but also to those innocent creatures who cannot express their discomfort.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bakersmans, C. and Madsen, E.L. (2002). Detection in Coal tar based contaminated ground water of mRNA transcripts related to naphthalene dioxygenase by FISH with tyramide signal amplification. J. Microbiol. Methods, 50: 75-84.

    Article  Google Scholar 

  • Brazil, G.M., Kenefick, L., Callanan, M., Haro, A., de Lorenzo, V., Dowling, D.N. and Ogara, F. (1995). Construction of a rhizosphere pseudomonad with potential to degrade polychlorinated-biphenyls and detection of bph gene expression in the rhizosphere. Applied and Environmental Microbiology, 61(5): 1946-1952.

    CAS  Google Scholar 

  • Beil, S., Mason, J.R., Timmis, K.N. and Pieper, D.H. (1998). Identification of chlorobenzene dioxygenase sequence elements involved in dechlorination of 1,2,4,5 tetrachlorobenzene. Journal of Bacteriology, 180(21): 5520-5528.

    CAS  Google Scholar 

  • Chakrabarty, A.M. (1985). Genetically manipulated microorganisms and their products in the Oil service Industries. Trends Biotechnology, 3: 32-38.

    Article  CAS  Google Scholar 

  • Cowan, D.A. (2000). Microbial genomes—the untapped resource. Trends Biotech, 18: 14-16.

    Article  CAS  Google Scholar 

  • Davison, J., Chevalier, N. and Brunel, F. (1989). Bacteriophage-T7 RNA polymerase controlled specific gene-expression in Pseudomonas. Gene, 83(2): 371-375.

    Article  CAS  Google Scholar 

  • Davison, J. (1999). Genetic exchange between bacteria in the environment. Plasmid, 42(2): 73-91.

    Article  CAS  Google Scholar 

  • Davison, J. (2002). Towards safer vectors for the field release of recombinant bacteria. Environ. Biosafety. Res., 1: 9-18.

    Article  CAS  Google Scholar 

  • De Lorenzo, V., Fernandez, S., Herrero, M., Jakubzik, U. and Timmis, K.N. (1993). Engineering of alkyl-responsive and haloaromatic-responsive gene-expression with mini-transposons containing regulated promoters of biodegradative pathways of Pseudomonas. Gene, 130(1): 41-46.

    Article  Google Scholar 

  • De Lorenzo, V. (1994). Designing microbial systems for gene-expression in the field. Trends in Biotechnology, 12(9): 365-371.

    Article  Google Scholar 

  • Erb, R.W., Eichner, C.A., Wagner-Döbler, I. and Timmis, K.N. (1997). Bioprotection of microbial communities from toxic phenol mixtures by a genetically designed pseudomonad. Nature Biotechnology, 15(4): 378-382.

    Article  CAS  Google Scholar 

  • Erickson, B.D. and Mondello, F.J. (1993). Enhanced biodegradation of polychlorinated biphenyls after site-directed mutagenesis of a biphenyl dioxygenase gene. Applied and Environmental Microbiology, 59(11): 3858-3862.

    CAS  Google Scholar 

  • Frey, J., Mudd, E.A. and Krisch, H.M. (1988). A bacteriophage-T4 expression cassette that functions efficiently in a wide range of gram-negative bacteria. Gene, 62(2): 237-247.

    Article  CAS  Google Scholar 

  • Furukawa, K., Hirose, J., Hayashida, S. and Nakamura, K. (1994). Efficient degradation of trichloroethylene by a hybrid aromatic ring dioxygenase. Journal ofBacteriology, 176(7): 2121-2123.

    CAS  Google Scholar 

  • Glick, B.R. and Pasternak, J.J. (2002). Molecular Biotechnology: Principles and Applications of Recombinant DNA. 3rd Ed., 860. ASM Press, ISBN-13: 9781555812249.

    Google Scholar 

  • Gallie, D.R. and Kado, C.I. (1989). A translational enhancer derived from tobacco mosaic-virus is functionally equivalent to a Shine-Dalgarno sequence. Proceedings of the National Academy of Sciences, USA, 86(1): 129-132.

    Article  CAS  Google Scholar 

  • Heuer, H., Dwyer, D.F., Timmis, K.N. and Wagnerdobler, I. (1995). Efficacy in aquatic microcosms of a genetically-engineered pseudomonad applicable for bioremediation. Microbial Ecology, 29(2): 203-220.

    Article  CAS  Google Scholar 

  • Hrywna, Y., Tsoi, T.V., Malteva, O.V., Quensen, J.F. and Tiedje, J.M. (1999). Construction and characterisation of two recombinant bacteria that grow on ortho- and parasubstituted chlorobiphenyls. Applied and Environmental Microbiology, 65(5): 2163-2169.

    CAS  Google Scholar 

  • Johri, A.K., Dua, M., Singh, A., Sethunathan, N. and Legge, R.L. (1999). Characterization and regulation of catabolic genes. Critical Reviews in Microbiology, 25(4): 245273.

    Google Scholar 

  • Keasling, J.D. and Bang, S.W. (1998). Recombinant DNA techniques for bioremediation and environmentally-friendly synthesis. Current Opinion in Biotechnology, 9(2): 135-140.

    Article  CAS  Google Scholar 

  • Kumar, S., Mukerji, K.G. and Lal, R. (1996). Molecular aspects of pesticide degradation by microorganisms. Critical Reviews in Microbiology, 22(1): 1-26.

    Article  CAS  Google Scholar 

  • Lange, C.C., Wackett, L.P., Minton, K.W. and Daly, M.J. (1998). Degradation in radioactive mixed waste environments. Biotechnology, 16: 929-933.

    Article  CAS  Google Scholar 

  • Little, C.D., Fraley, C.D., McCann, M.P. and Matin, A. (1991). Use of bacterial stress promoters to induce biodegradation under conditions of environmental stress. In: On-Site Bioreclamation. Hinchee, R.E. and Olfenbuttel, R.F. (editors). Butterworth- Heinemann: Stoneham, 493-498.

    Google Scholar 

  • Liu, Z., Jainhong, Q., Hong, Xu, Wu, J. and Li, S.P. (2006). Construction of a genetically engineered organism for degrading organo phosphate and carbamate pesticides. Int. Biodet & Biodeg., 58(2): 65-69.

    Article  CAS  Google Scholar 

  • Lovley, D.R. (2003). Cleaning up with genomics: Applying molecular biology to bioremediation. Nature Reviews. Microbiology, 1(1): 35-44.

    Article  CAS  Google Scholar 

  • Marko, B., Lampinen, J. and Karp, M. (1995). A Luminiscence based mercury biosensor. Anal Chem., 67(3): 667-669.

    Article  Google Scholar 

  • Mason, J.R., Briganti, F. and Wild, J.R. (1997). Protein engineering for improved biodegradation of recalcitrant pollutants. In: Perspectives in Bioremediation. Wild, J.R. et al. (editors), Kluwer Academic Publishers: Netherlands, 107-118.

    Google Scholar 

  • Mermod, N., Ramos, J.L., Lehrbach, P.R. and Timmis, K.N. (1986). Vector for regulated expression of cloned genes in a wide-range of Gram-negative bacteria. Journal of Bacteriology, 167(2): 447-454.

    CAS  Google Scholar 

  • Mondello, F.J. (1989). Cloning and expression in Escherichia coli of Pseudomonas strain LB400 genes encoding polychlorinated biphenyl degradation. Journal of Bacteriology, 171(3): 1725-1732.

    CAS  Google Scholar 

  • Matin, A., Little, C.D., Fraley, C.D. and Keyhan, M. (1995). Use of starvation promoters to limit growth and select for trichloroethylene and phenol transformation activity in recombinant Escherichia coli. Applied and Environmental Microbiology, 61(9): 3323-3328.

    CAS  Google Scholar 

  • Murdock, D., Ensley, B.D., Serdar, C. and Thalen, M. (1993). Construction of metabolic operons catalyzing the de-novo biosynthesis of indigo in Escherichia coli. BioTechnology, 11(3): 381-386.

    Article  CAS  Google Scholar 

  • Paitan, Y., Biran, D., Biran, I., Shechter, N., Babai, R., Rishpon, J. and Ron, E.Z. (2003). On-line and in-situ Biosensors for monitoring environmental pollution. Biotechnol Adv., 22(1-2): 27-33.

    Article  CAS  Google Scholar 

  • Pandey, G., Paul, D. and Jain, R.K. (2005). Suicidal genetically engineered microorganisms for bioremediation—Need and perspectives. BioEssays., 25(5): 563-573.

    Google Scholar 

  • Pipke, R., Wagner-Döbler, I., Timmis, K.N. and Dwyer, D.F. (1992). Survival and function of a genetically engineered pseudomonad in aquatic sediment microcosms. Applied and Environmental Microbiology, 58: 1259-1265.

    CAS  Google Scholar 

  • Ramanathan, S., Shi, W., Rosen, B.P. and Daunert, S. (1997). Sensing antimonite and arsenite at the subattomole level with genetically engineered bioluminescent bacteria. Anal. Chem., 69: 3380-3384.

    Article  CAS  Google Scholar 

  • Romantschuk, M., Sarand, I., Petanen, T., Peltola, R., Jonsson-Vihanne, M., Koivula, T., Yrjala, K. and Haahtela, K. (2000). Means to improve the effect of in situ bioremediation of contaminated soil: An overview of novel approaches. Environmental Pollution, 107(2): 179-185.

    Article  CAS  Google Scholar 

  • Ramos, J.L., Stolz, A., Reineke, W. and Timmis, K.N. (1986). Altered effector specificities in regulators of gene expression: TOL plasmid xylsS mutants and their use to engineer expansion of the range of aromatics degraded by bacteria. Proceedings of the National Academy of Sciences of the United States of America, 83: 8467-8471.

    Article  CAS  Google Scholar 

  • Ramos, J.L., Wasserfallen, A., Rose, K. and Timmis, K.N. (1987). Redesigning metabolic routes: Manipulation of TOL plasmid pathway for catabolism of alkylbenzoates. Science, 235(4788): 593-596.

    Article  CAS  Google Scholar 

  • Reineke, W. and Knackmuss, H.J. (1980). Hybrid pathway for chlorobenzoate metabolism in Pseudomonas sp. B13 derivatives. Journal of Bacteriology, 142: 467-473.

    Google Scholar 

  • Sambrook, J., Fritsch, E.F. and Maniatis, T. (1989). Molecular Cloning, A Laboratory Manual (2nd Edition). Cold Spring Harbor Laboratory Press, USA.

    Google Scholar 

  • Steinberg, F.M. and Raso, J. (1998). Biotech Pharmaceuticals and Biotherapy: An Overview. J. Pharm. Pharmaceutical Sci., 1(2): 48-59.

    CAS  Google Scholar 

  • Tabor, S. and Richardson, C.C. (1985). A bacteriophage-T7 RNA-polymerase promoter system for controlled exclusive expression of specific genes. Proceedings of the National Academy of Sciences of the United States of America, 82(4): 1074-1078.

    Article  CAS  Google Scholar 

  • Timmis, K.N., Steffan, R.J. and Unterman, R. (1994). Designing microorganisms for the treatment of toxic wastes. Annual Reviews Microbiology, 48: 525-557.

    Article  CAS  Google Scholar 

  • Timmis, K.N. and Pieper, D.H. (1999). Bacteria designed for bioremediation. Trends in Biotechnology, 17: 201-204.

    Article  CAS  Google Scholar 

  • Wilson, M. and Lindow, S.E. (1993). Release of recombinant microorganisms. Annual Reviews Microbiology, 47: 913-944.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Capital Publishing Company

About this chapter

Cite this chapter

Kumar, P., Baul, G. (2010). Recombinant DNA Technology for Bioremediation of Pollutants. In: Fulekar, M.H. (eds) Bioremediation Technology. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3678-0_8

Download citation

Publish with us

Policies and ethics