Skip to main content

Bioremediation Technology for Hazardous Wastes - Recent Advances

  • Chapter
Bioremediation Technology

Abstract

Hazardous waste: A substance which has no further economic use and is disposed off on to land, water or air which might be potentially harmful to man and his environment, by reason of its physico-chemical, biological properties. Environment (Protection) Act 1986 under the Hazardous Waste (Management and Handling) Rule (1989) describes about the hazardous waste and state to ensure that hazardous waste are managed in a manner which will protect human health and environment against the adverse effects which may result from such wastes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Agarry, S.E., Solomon, B.O. and Layokun, S.K. (2008). Kinetics of batch microbial degradation of phenols by indigenous binary mixed culture of Pseudomonas aeruginosa and Pseudomonas fluorescence. Afr. J. Biotechnol., 7: 2417-2423.

    CAS  Google Scholar 

  • Arafa, M.A. (2003). Biodegradation of some aromatic hydrocarbons (BTEXs) by a bacterial consortium isolated from polluted site in Saudi Arabia. Pak. J. Biol. Sci., 6: 1482-1486.

    Article  Google Scholar 

  • Baskaran, S., Kookana, R.S. and Naidu, R. (2003). Contrasting behavior of chlorpyrifos and its primary metabolite TCP (3,5,6-trichloro-2-pyridinol) with depth in soil profiles. Australian J. of Soil Res., 41(4): 749-760.

    Article  CAS  Google Scholar 

  • Bidlack, H.D. (1978). The hydrolysis of triclopyr EB ester in buffered deionized water, natural water, and selected soils. DowElanco Data Package Report No. ABM- 106279-E. DPR# 51566-001.

    Google Scholar 

  • Collins, L.D. and Daugulis, A.J. (1997). Biodegradation of phenol at high initial concentration in two-phase partitioning batch and fed-batch bioreactors. Biotechnol. Bioeng., 55: 155-162.

    Article  CAS  Google Scholar 

  • Collins, L.D. and Daugulis, A.J. (2004). Characterization and optimization of a two- phase partitioning bioreactor for the degradation of phenol. Appl. Microbiol. Biotechnol., 48: 18-22.

    Article  Google Scholar 

  • Cryer, S.A. (1993). The dissipation and movement of triclopyr in a Northern U.S.A. forest ecosystem. DowElanco. Study No: PM91- 2502. Data package Report No. ABM-143895-E. DPR# 51566-021.

    Google Scholar 

  • Dzantor, E.K., Chekol, T. and Vough, L.R. (2000). Feasibility of using forage grasses and legumes for phytoremediation of organic pollutants. J. Environ. Sci. Health, 35: 1645-1661.

    Article  Google Scholar 

  • Daugulis, A.J. (2001). Two-phase partitioning bioreactors: A new technology platform for destroying xenobiotics. Trends Biotechnol., 19: 457-462.

    Article  CAS  Google Scholar 

  • Environmental Protection Agency (2005). Pesticide Product databases, Washington, D.C.

    Google Scholar 

  • Escalante-Espinosa, E., Gallegos-Martínez, M.E., Favela-Torres, E. and Gutiérrez- Rojas, M. (2005). Improvement of the hydrocarbon phytoremediation rate by Cyperus laxus Lam. inoculated with a microbial consortium in a model system. Chemosphere, 59: 405-413.

    Google Scholar 

  • Fulekar, M.H. (2005). Environmental Biotechnology. Oxford and IBH, New Delhi, India.

    Google Scholar 

  • Fulekar, M.H. (2005). Bioremediation technologies for environment. IJEP, 25: 358-364.

    CAS  Google Scholar 

  • Fang, C., Radosevich, M. and Fuhrmann, J.J. (2001). Atrazine and phenanthrene degradation in grass rhizosphere soil, Soil Biol. Biochem., 33: 671-678.

    CAS  Google Scholar 

  • Geetha, M. and M.H. Fulekar (2008). Bioremediation of pesticides in surface soil treatment unit using microbial consortia. African Journal of Environmental Science and Technology, 2(2): 036-045.

    Google Scholar 

  • Ghassemi, M., Fargo, L., Painter, P., Quinlivan, S., Scofield, R. and Takata, A. (1981). Environmental fates and impacts of major forest use pesticides. U.S. EPA. Office of Pesticides and Toxic Substances. Washington D.C.

    Google Scholar 

  • Kidd, P.S., Prieto-Fernández, A., Monterroso, C. and Acea, M.J. (2008). Rhizosphere microbial community and hexachlorocyclohexane degradative potential in contrasting plant species. Plant Soil, 302: 233-247.

    Article  CAS  Google Scholar 

  • Korade, D.L. and Fulekar, M.H. (2008). Remediation of anthracene in mycorrhizospheric soil using ryegrass. Afr. J. Environ. Sci. Technol., 2: 249-256.

    Google Scholar 

  • Korade, D.L. and Fulekar, M.H. (2009). Rhizosphere remediation of chlorpyrifos in mycorrhizospheric soil using ryegrass. Journal of Hazardous Materials, 172: 1344-1350.

    Article  CAS  Google Scholar 

  • Meharg, A.A. and Killham, K. (1990). Carbon distribution within the plant and rhizosphere in laboratory and field-grown Lolium perenne at different stages of development. Soil Biol. Biochem., 22: 471-477.

    Article  CAS  Google Scholar 

  • Mahajan, B.K. (1991). Methods in Biostatistics. Jaypee Brothers Medical Publishers (P) Ltd., New Delhi, India. 129-153.

    Google Scholar 

  • Okoh, A.I. (2006). Biodegradation alternative in the cleanup of petroleum hydrocarbon pollutants. Biotechnol. Mol. Biol. Rev., 1: 38-50.

    Google Scholar 

  • Rousseaux, S., Hartmann, A., Lagacherie, B., Piutti, S., Andreux, F. and Soulas, G. (2003). Inoculation of an atrazine-degrading strain, Chelatobacter heintzii Cit1, in four different soils: Effects of different inoculums densities. Chemosphere, 51: 569-576.

    Article  CAS  Google Scholar 

  • Singh, B.K., Walker, A., Morgan, A.W. and Wright, D.J. (2004). Biodegradation of chlorpyrifos by Enterobacter strain B-14 and its use in bioremediation of contaminated soils. Applied and Environ. Microbiol., 70(8): 4855-4863.

    Article  CAS  Google Scholar 

  • Satsangee, R. and Ghosh, P. (1996). Continuous anaerobic phenol degradation using an adapted mixed culture. World J. Microbiol.Biotechnol., 12: 409-411.

    Article  CAS  Google Scholar 

  • Singh, D. and Fulekar, M.H. (2009). Bioremediation of benzene, toluene and o-xylene by cow dung microbial consortium. JABs, 14: 788-795.

    Google Scholar 

  • Singh, D. and Fulekar, M.H. (2007). Bioremediation of phenol using microbial consortium in bioreactor. IRFB, 1: 32-38.

    Google Scholar 

  • Singh, D. and Fulekar, M.H. (2009). Bioremediation of phenol by a novel partitioning bioreactor using cow dung microbial consortia. Biotechnol. J., 4: 423-431.

    Article  CAS  Google Scholar 

  • Yu, Y.L., Chen, Y.X., Luo, Y.M., Pan, X.D., He, Y.F. and Wong, M.H. (2003). Rapid degradation of butachlor in wheat rhizosphere soil. Chemosphere, 50: 771-774.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Capital Publishing Company

About this chapter

Cite this chapter

Fulekar, M.H. (2010). Bioremediation Technology for Hazardous Wastes - Recent Advances. In: Fulekar, M.H. (eds) Bioremediation Technology. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3678-0_5

Download citation

Publish with us

Policies and ethics