Skip to main content

Improving Plants for Zinc Acquisition

  • Chapter
Bioremediation Technology
  • 2540 Accesses

Abstract

Plants require essential metals for their growth and development and uptake of mineral elements from soil is a part of mineral nutrition. The plant roots are in direct contact with soil and are involved in uptake of metal ions which are later translocated to different aerial parts, where they are subsequently used for growth, development and reproduction. Concentration of metal ions in soil and their chemical speciation change with the location and environment and plants have tightly regulated mechanisms for uptake, transport and sequestration of metals (Kramer et al., 2007). Essential metals at elevated levels and contaminant non-essential metals can be toxic to plant cells and a highly regulated network of metal homeostasis mechanisms operate for control of metal uptake, trafficking and storage (Clemens, 2001).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alloway, B.J. and Steinnes, E. (1999). Anthropogenic additions of cadmium to soils. In: Cadmium in soils and plants (eds M.J. McLaughlin and B.R. Singh), pp. 97-123. Kluwer Academic Publishers, Dodrecht, Netherlands.

    Google Scholar 

  • Assuncao, A.G.L., Schat, H. and Aarts, M.G.M. (2003). Thlaspi caerulescens, an attractive model species to study heavy metal hyperaccumulation in plants. New Phytologist, 159: 351-360.

    Article  CAS  Google Scholar 

  • Baker, A.J.M. (1995). Metal hyperaccumulation by plants: Our present knowledge ofthe ecophysiological phenomenon. In: Will Plants Have a Role in Bioremediation? 14th Annual Symp. Current Topics in Plant Biochemistry, Physiology and Molecular Biology. Columbia MO, 19-22 April, pp. 7-8.

    Google Scholar 

  • Baker, A.J.M. and Brooks, R.R. (1989). Terrestrial higher plants which hyperaccumulate metallic elements—A review of their distribution, ecology and phytochemistry. Biorecovery, 1: 81-126.

    CAS  Google Scholar 

  • Barber, S.A. (1995). Soil nutrient bioavailability, 2nd edn. John Wiley & Sons, Inc. New York, NY, USA.

    Google Scholar 

  • Broadley, M.R., White, P.J., Hammond, J.P., Zelko, I. and Lux, A. (2007). Zinc in plants. New Phytol., 173 (4): 677-702.

    Article  CAS  Google Scholar 

  • Brooks, J.M., Anderson, A.L., Sassen, R., MacDonald, I.R., Kennicutt, I.I.M.C. and Guinasso Jr., N.L. (1994). Hydrate occurrences in shallow subsurface cores from continental slope sediments. Ann. NY Acad. Sci., 715: 381-391.

    Article  CAS  Google Scholar 

  • Brooks, R.R., Lee, J., Reeves R.D. and Jaffre, T. (1977). Detection of nickeliferous rocks by analysis of herbarium specimens of indicator plants. J. Geochem. Explor., 7: 49-57.

    Article  CAS  Google Scholar 

  • Cakmak, I. (2008). Enrichment of cereal grains with zinc: agronomic or genetic biofortification? Plant Soil, 302: 1-17.

    Article  CAS  Google Scholar 

  • Chvapil, M., Ryan, J.N., Elias, S.L. and Peng, Y.M. (1973). Protective effect of zinc on CCl4-induced liver injury in rats. Experimental and Molecular Pathology, 19: 186-196.

    Article  CAS  Google Scholar 

  • Clarkson, D.T. and Hanson, J.B. (1980). The mineral nutrition of higher plants. Ann. Rev. Plant Physiol, 31: 239-298.

    Article  CAS  Google Scholar 

  • Clemens, S. (2001). Molecular mechanisms of plant metal tolerance and homeostasis. Planta, 212: 475-486.

    Article  CAS  Google Scholar 

  • Clemens, S. (2006). Evolution and function of phytochelatin synthases. J. Plant Physiol., 163: 319-332.

    Article  CAS  Google Scholar 

  • Coleman, J.E. (1998). Zinc enzymes. Curr. Opin. Chem. Biol., 2: 222-234.

    Article  CAS  Google Scholar 

  • Drager, D.B., Desbrosses-Fonrouge, A.G., Krach, C., Chardonnens, A.N., Meyer, R.C., Saumitou-Laprade, P. and Kramer, U. (2004). Two genes encoding Arabidopsis halleri MTP1 metal transport proteins co-segregate with zinc tolerance and account for high MTP1 transcript levels. Plant J, 39: 425-439.

    Article  Google Scholar 

  • Eapen, S., Dixit, P., Singh, S., Maruthi Mohan, P. and Ramachandran, V. (2009). Remediation of zinc and copper by transgenic tobacco plants with metal transporter genes from Neurospora crassa. New Biotechnology, 25: S293.

    Article  Google Scholar 

  • Englbrecht, C.C., Schoof, H. and Bohm, S. (2004). Conservation, diversification and expansion of C2H2 zinc finger proteins in the Arabidopsis thaliana genome. BMC genomics, 5: 39.

    Article  Google Scholar 

  • Gasic, K. and Korban, S.S. (2007). Expression of Arabidopsis phytochelatin synthase in Indian mustard (Brassica juncea) plants enhances tolerance for Cd and Zn. Planta, 225: 1277-1285.

    Article  CAS  Google Scholar 

  • Grusak, M. (2002). Enhancing mineral content in plant food products. Supplement to Journal of the American College of Nutrition, 21(3 S): 178 S-183S.

    Google Scholar 

  • Hanikenne, M., Talke, I.N., Hayden, M.J., Lanz, C., Nolte, A., Motte, P., Kroymann, J., Weigel, D. and Kramer, U. (2008). Evolution of metal hyperaccumulation required cis-regulatory changes and triplication of HMA4. Nature, 453: 391-395.

    Article  CAS  Google Scholar 

  • Haydon, M.J. and Cobbett, C.S. (2007). A novel major facilitator superfamily protein at the tonoplast influences zinc tolerance and accumulation in Arabidopsis. Plant Physiology, 143: 1705-1719.

    Article  CAS  Google Scholar 

  • Hershfinkel, M. (2006). Zn2+, a dynamic signaling molecule. In: Molecular Biology of Metal Homeostasis and Detoxification—From Microbes to Man (eds M.J. Tamas and E. Martinoia), pp. 131-152. Springer.

    Google Scholar 

  • Hussain, D., Haydon, M.J., Wang, Y., Wong, E., Sherson, S.M., Young, J., Camakaris, J., Harper, J.F. and Cobbett, C.S. (2004). P-type ATPase heavy metal transporters with roles in essential zinc homeostasis. Plant Cell, 16: 1327-1339.

    Article  CAS  Google Scholar 

  • Kim, Y., Choi, H., Segami, S., Cho, H., Martinoia, E., Maeshima, M. and Lee, Y. (2009). AtHMA1 contributes to the detoxification of excess Zn(II) in Arabidopsis. Plant J, 58: 737-753.

    Article  CAS  Google Scholar 

  • Klug, A. (1999). Zinc finger peptides for the regulation of gene expression. J. Molec. Biology, 293: 215-218.

    Article  CAS  Google Scholar 

  • Kramer, U. and Clemens, S. (2006). Functions and homeostasis of zinc, copper, and nickel in plants, molecule. In: Molecular Biology of Metal Homeostasis and Detoxification—From Microbes to Man (eds M.J. Tamas and E. Martinoia), pp. 216-271, Springer.

    Google Scholar 

  • Kramer, U., Talkea, I.N. and Hanikenneb, M. (2007). Transition metal transport. FEBS Letters, 581: 2263-2272.

    Article  Google Scholar 

  • Lee, J.Y., Kim, J.H., Palmiter, R.D. and Koh, J.Y. (2003). Zinc released from metallothionein-III may contribute to hippocampal CA1 and thalamic neuronal death following acute brain injury. Exp. Neurol., 184: 337-347.

    Article  CAS  Google Scholar 

  • Lee, S. and An, G. (2009). Over-expression of OsIRTl leads to increased iron and zinc accumulations in rice. Plant Cell Environ., 32: 408-416.

    Article  CAS  Google Scholar 

  • Lindsay, W.L. (1979). Chemical equilibria in soils. John Wiley & Sons, Inc. New York, NY, USA.

    Google Scholar 

  • Lombi, E., Tearall, K.L., Howarth, J.R., Zhao, F.J., Hawkesford, M.J. and McGrath, S.P. (2002). Influence of iron status on cadmium and zinc uptake by different ecotypes of hyperaccumulators Thlaspi careulescens. Plant Physiol., 128: 1359-1367.

    Article  CAS  Google Scholar 

  • Maret, W. and Sandstead, H.H. (2006). Zinc requirements and the risks and benefits of zinc supplementation. Journal of Trace Elements in Medicine and Biology, 20: 3-18.

    Article  CAS  Google Scholar 

  • Marschner, H. (1988). Mechanisms of manganese acquisition by roots from soils. In: Manganese in Soils and Plants. Eds. R.D. Graham, R.J. Hannam and N.C. Uren. pp 191-204. Kluwer Academic Publishers, Dordrecht, Boston, London.

    Chapter  Google Scholar 

  • Marschner, H. (1995). Mineral Nutrition of Higher Plants. Academic Press, London, UK.

    Google Scholar 

  • Mirouze, M., Sels, J., Richard, O., Czernic, P., Loubet, S., Jacquier, A., Francois, I.E.J. A., Cammue, B.P.A., Lebrun, M., Berthomieu, P. and Marques, L. (2006). A putative novel role for plant defensins: A defensin from the zinc hyper-accumulating plant, Arabidopsis halleri, confers zinc tolerance. Plant Journal, 47: 329-342.

    Article  CAS  Google Scholar 

  • Ramesh, S.A., Choimes, S. and Schachtman, D.P. (2004). Overexpression of an Arabidopsis zinc transporter in Hordeum vulgare increases short term zinc uptake after zinc deprivation and seed zinc content. PlantMolBiol., 54: 373-385.

    CAS  Google Scholar 

  • Ramesh, S.A., Shin, R., Eide, D.J. and Schachtman, D.P. (2003). Differential metal selectivity and gene expression of two zinc transporters from rice. Plant Physiol., 133: 126-134.

    Article  CAS  Google Scholar 

  • Schaaf, G., Ludewig, U., Erenoglu, B.E., Mori, S., Kitahara, T. and von Wiren, N. (2003). ZmYS1 functions as a proton-coupled symporter for phytosiderophore- and nicotianamine-chelated metals. J. Biol. Chem., 279: 9091-9096.

    Article  Google Scholar 

  • Sheng, J., Liu, K., Fan, B., Yuan, Y., Shen, L. and Ru, B. (2007). Improving zinc content and antioxidant activity in transgenic tomato plants with expression of mouse metallothionein-I by mt-I gene. J. Agric. Food Chem., 55: 9846-9849.

    Article  CAS  Google Scholar 

  • Singla-Pareek, S.L., Yadav, S.K., Pareek, A., Reddy, M.K. and Sopory, S.K. (2006). Transgenic tobacco overexpressing glyoxalase pathway enzymes grow and set viable seeds in zinc-spiked soils. Plant Physiol., 140: 613-623.

    Article  CAS  Google Scholar 

  • Suzuki, M., Tsukamoto, T., Inoue, H., Watanabe, S., Matsuhashi, S., Takahashi, M., Nakanishi, H., Mori, S. and Nishizawa, N.K. (2008). Deoxymugineic acid increases Zn translocation in Zn-deficient rice plants. Plant Mol Biol., 66: 609-617.

    Article  CAS  Google Scholar 

  • van der Zaal, B.J., Neuteboom L.W., Pinas J.E., Chardonnens A.N., Schat H., Verkleij J.A.C. and Hooykaas, P.J.J. (1999). Overexpression of a novel Arabidopsis gene related to putative zinc transporter genes from animal can lead to enhanced zinc resistance and accumulation. Plant Physiology, 119: 1047-1055.

    Article  Google Scholar 

  • Verret, F., Gravot, A., Auroy, P., Leonhardt, N., David, P., Nussaume, L., Vavasseur, A. and Richaud, P. (2004). Overexpression of AtHMA4 enhances root-to-shoot translocation of zinc and cadmium and plant metal tolerance. FEBS Letters, 576: 306-312.

    Article  CAS  Google Scholar 

  • Vitart, V., Baxter, I., Doerner, P. and Harper, J.F. (2001). Evidence for a role in growth and salt resistance of a plasma membrane H + -ATPase in the root endodermis. Plant J, 27: 191-201.

    Article  CAS  Google Scholar 

  • von Wiren, N., Marschner, H. and Romheld, V. (1996). Roots of iron-efficient maize also absorb phytosiderophore-chelated zinc. Plant Physiol., 111: 1119-1125.

    Google Scholar 

  • White, P.J. and Broadley, M.R. (2005). Biofortifying crops with essential mineral elements. Trends in Plant Sci., 10: 586-593.

    Article  Google Scholar 

  • World Health Organization. (2002). World Health Rep. 2002 (http://www.who.int/ whr/2002/).

  • Xu, J., Chai, T., Zhang, Y., Lang, M. and Han, L. (2009). The cation-efflux transporter BjCET2 mediates zinc and cadmium accumulation in Brassica juncea L. leaves. Plant Cell Rep, 28: 1235-1242.

    Google Scholar 

  • Yang, Z., Wu, Y., Li, Y., Ling, H.Q. and Chu, C. (2009). OsMT1a, a type 1 metallothionein, plays the pivotal role in zinc homeostasis and drought tolerance in rice. Plant Mol Biol, 70: 219-229.

    Article  CAS  Google Scholar 

  • Zhou, J. and Goldsbrough, P.B. (1 994). Functional homologs of fungal metallothionein genes from Arabidopsis. Plant Cell, 6: 875-884.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Capital Publishing Company

About this chapter

Cite this chapter

Dixit, P., Eapen, S. (2010). Improving Plants for Zinc Acquisition. In: Fulekar, M.H. (eds) Bioremediation Technology. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3678-0_12

Download citation

Publish with us

Policies and ethics