Skip to main content

Dynamic Fire 3D Modeling Using a Real-Time Stereovision System

  • Conference paper
  • First Online:

Abstract

This work presents a new framework for three-dimensional modeling of dynamic fires present in unstructured scenes. The proposed approach addresses the problem of segmenting fire regions using information from YUV and RGB color spaces. Clustering is also used to extract salient points from a pair of stereo images. These points are then used to reconstruct 3D positions in the scene. A matching strategy is proposed to deal with mismatches due to occlusions and missing data. The obtained data are fitted in a 3D ellipsoid in order to model the enclosing fire volume. This form is then used to compute dynamic fire characteristics like its position, dimension, orientation, heading direction, etc. These results are of great importance for fire behavior monitoring and prediction.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C. Abecassis-Empis et al., “Characterisation of Dalmarnock fire Test One”, in Experimental Thermal and Fluid Science, 2008.

    Google Scholar 

  2. J. H. Balbi, J. L. Rossi, T. Marcelli, P. A. Santoni, “A 3D physical real-time model of surface fires across fuel beds”, in Combustion Science and Technology, vol. 179, 2007, pp. 2511-2537.

    Article  Google Scholar 

  3. J. Huseynov, S. Baliga, A. Widmer., Z. Boger, “2008 Special Issue: An adaptive method for industrial hydrocarbon flame detection" in Neural Networks 21(2-3): 398-405, 2008.

    Article  Google Scholar 

  4. C. M. Britton, B. L. Karr, F. A. Sneva, “Correlation of weather and fuel variables to mesquite damage by fire”, in Journ. of Range Manag., vol. 30, 1977, pp. 395-397

    Article  Google Scholar 

  5. H. B. Clements, “Measuring fire behavior with photography”, Photogram. Engineer. And Remote Sensing , vol. 49, n°10, 1983, pp. 1563-1575.

    Google Scholar 

  6. G. Lu, Y. Yan, Y Huang and A. Reed, “An Intelligent Monitoring and Control System of Combustion Flames”, Meas. Control , vol. 32, n°7, 1999, pp. 164–168.

    Google Scholar 

  7. D. X. Viegas, M.G.Cruz, L.M. Silva, A.J. Ollero, et al., “Forest Fire Research and Wildland Fire Safety, Proc. of IV Intern. Conf. on Forest Research and Wildland and Fire Safty Summit, 2002.

    Google Scholar 

  8. H. C. Bheemul, G. Lu and Y. Yan, “Digital Imaging Based Three-Dimensional Characterization of Flame Front Structures in a Turbulent Flame”, IEEE Trans. on Instr. And Measur., vol. 54, 2005, pp. 1073-1078.

    Article  Google Scholar 

  9. G. Lu, G. Gilabert and Y. Yan, “Three Dimensional Visualisation and Reconstruction of the Luminosity Distribution of a Flame using Digital Imaging Techniques”, Journ. of Physics: Conference Series, vol. 15, 2005, pp. 194-200

    Article  Google Scholar 

  10. S. W. Hasinoff and K.N. Kutulakos, “Photo-Consistent Reconstruction of Semitransparent Scenes by Density-Sheet Decomposition”, IEEE Trans. On Pattern Analysis and Machine Intelligence, vol. 29, n°5, 2007, pp. 870-885.

    Article  Google Scholar 

  11. J. R. Martinez-de Dios, J.C . André, J.C.Gonçalves, B.Ch. Arrue, A. Ollero and D.X. Viegas, “Laboratory Fire Spread Analysis Using Visual and Infrared Cameras”, Inter. Journ.of Wildland Fire, vol. 15, 2006, pp.175-186.

    Google Scholar 

  12. E. Pastor, A. Àgueda, J. Andrade-Cetto, M. Muñoz, Y. Pérez, E. Planas, “Computing the rate of spread of linear flame fronts by thermal image processing”, Fire Safety Journal, vol. 41, n°8, 2006, pp. 569-579.

    Article  Google Scholar 

  13. L. Merino, F. Caballero and J.R. Martínez-de Dios, J. Ferruz, A. Ollero. “A cooperative perception system for multiple UAVs: Application to automatic detection of forest fire”, Journal of Field Robotics. vol. 23, n°3, John Wiley, 2006, pp. 165 - 184.

    Article  Google Scholar 

  14. J. R. Martinez-de Dios, B.C. Arrue, A. Ollero, L. Merino, F. Gomez-Rodriguez, “Computer vision techniques for forest fire perception, Image and vision computing, vol. 26, n°4, 2008, pp. 550-562.

    Article  Google Scholar 

  15. E. Trucco, A. Verri, "Introductory Techniques for 3-D Computer Vision", Prentice Hall, 1998.

    Google Scholar 

  16. O. Faugeras, "Three Dimensional Computer Vision", MIT Press, 1993.

    Google Scholar 

  17. R. Hartley, A. Zissermann, “Multiple view geometry in computer vision”, Cambridge university press, 2nd edition, 2003

    Google Scholar 

  18. A. Del Bue and L. Agapito. “Non-rigid Stereo Factorization”, International Journal of Computer Vision (IJCV), vol. 66, n°2, 2006, pp. 193-207.

    Article  Google Scholar 

  19. A. Del Bue, X. Llado and L. Agapito, “Non-rigid Face Modelling Using Shape Priors”, Analysis and Modelling of Faces and Gestures (AMFG 2005). Springer LNCS 3723.

    Google Scholar 

  20. A. Del Bue, L. Agapito, “Non-rigid 3D shape recovery using stereo factorization”. Asian Conference of Computer Vision (ACCV2004), 2004, vol. 1, pp. 25-30, 2004.

    Google Scholar 

  21. R. Hartley, A. Zissermann, “Multiple view geometry in computer vision”, Cambridge university press, 2nd edition, 2003

    Google Scholar 

  22. N Ayache, P.T. Sander, “Artificial Vision for Mobile Robots: Stereo Vision and Multisensory Perception” MIT Press, 1991.

    Google Scholar 

  23. R. Hartley, “Stereo from uncalibrated cameras”, Proc. Of the Second Joint European – US Workshop on Applications of Invariance in Computer Vision, 1994, pp. 237-256.

    Google Scholar 

  24. Z. Zhang, “Determining the Epipolar Geometry and its Uncertainty: A Review”, International Journal of Computer Vision, vol. 27, n°2, 1998, pp. 161-198.

    Article  Google Scholar 

  25. Point Grey Research. http://www.ptgrey.com

  26. S. Westland and A. Ripamonti, Computational Colour Science. John Wiley, 2004.

    Google Scholar 

  27. A. Tremeau, C. Fernandez-Maloigne, and P. Bonton, Image numérique couleur, Dunod, 2004.

    Google Scholar 

  28. M. J. Todd, and E. A. Yıldırım, “On Khachiyan's algorithm for the computation of minimum-volume enclosing ellipsoids”, Discrete Applied Mathematics, vol. 155, Issue 13, 2007, pp. 1731-1744.

    Article  Google Scholar 

Download references

Acknowledgment

The present work was supported in part by the Corsican region under Grant ARPR 2007-2008.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this paper

Cite this paper

Rossi, L., Akhloufi, M. (2010). Dynamic Fire 3D Modeling Using a Real-Time Stereovision System. In: Iskander, M., Kapila, V., Karim, M. (eds) Technological Developments in Education and Automation. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3656-8_8

Download citation

Publish with us

Policies and ethics