Skip to main content

Results on H-Infinity Static Output-Feedback Control of an Electro-Mechanical System

  • Conference paper
  • First Online:
Technological Developments in Education and Automation

Abstract

This paper presents H-Infinity static-output feedback controller implementation comparison results on an electromechanical system test bed. In eletro-mechanical systems it is expensive and sometimes difficult to achieve and implement full state-feedback. Uncertainties in the electromechanical systems and the disturbances affect the performance of the optimal controller; controllers may require prescribed desirable structures as well. In this paper simplified necessary and sufficient conditions are revisited for static output-feedback control for a spring mass damper electromechanical systems. This paper shows implementation of a numerically efficient solution algorithm to solve coupled design equations to determine the H-Infinity output-feedback gain. No initial stabilizing output feedback gain is needed. Effectiveness of the proposed method is demonstrated through comparison of optimal output-feedback, H-Infinity output-feedback and state feedback implementation on spring-mass damper electromechanical system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Astolfi and P. Colaneri (2000). Static output feedback stabilization of linear and nonlinear systems. Proc. IEEE Conf. Decision and Control, Sydney, 2920-2925.

    Google Scholar 

  2. T. P. Basar , and P. Bernard (1991) H∞ Optimal Control and Related Minimax Design Problems, Berlin, Germany, Birkhauser.

    Google Scholar 

  3. Y. Cao, Y. Sun, and W. Mao (1998). A new necessary and sufficient condition for static output feedback stabilizability and comments on “ Stabilization via static Output Feedback”. IEEE Transactions on Automatic Control, 43(2), 1110-1112.

    Google Scholar 

  4. J. H. Doyle, K. Glover, P. Khargonekar, and B. Francis (1989). State solutions to standard H2 and H∞ Control Problems. IEEE Transactions on Automatic Control, 34(8), 831-847.

    Article  Google Scholar 

  5. J. Gadewadikar, F. L. Lewis, and M. Abu-Khalaf (2006). Necessary and Sufficient Conditions for H∞ Static Output-Feedback Control. Journal of Guidance Dynamics & Control, AIAA, Vol. 29, No. 4, July– August 2006, pp. 915-920.

    Article  Google Scholar 

  6. J. Gadewadikar, Ajay Bhilegaonkar, F. L. Lewis (2007), Bounded L2 Gain Static Output Feedback: Controller Design and Implementation on an Electromechanical System, Industrial Electronics, IEEE Transactions on, Oct. 2007, Volume: 54, Issue: 5, 2593-2599.

    Google Scholar 

  7. P. Gahinet, A. Nemirovski, A. Laub, & M. Chilali LMI Control Tool box (Natick, MA, Mathworks, Inc, 1995).

    Google Scholar 

  8. J. C. Geromel, and P.L.D. Peres (1985). Decentralised load frequency control. IEE Proceedings, 132(5), 225-230.

    Google Scholar 

  9. J. C. Geromel, C.C. de Souza and R. E. Skelton (1998). Static output feedback controllers: stability and convexity. IEEE Transactions on Automatic Control, 43(1), 120-125.

    Article  Google Scholar 

  10. L. E Ghaoui., F. Oustry, & M. AitRami, A cone complementarity linearization algorithm for static output-feedback and related problems, IEEE Trans. Automat. Contr., vol. 42, 1997, 1171-1176.

    Article  Google Scholar 

  11. G. Gu and P. Misra (1994). J. Guidance, Control, and Dynamics, 17(1), 145-152.

    Article  Google Scholar 

  12. O. Kuljaca, N. Swamy, F. L. Lewis, C. M. Kwan “Design and Implementation of Industrial Neural Network Controller Using Backstepping”

    Google Scholar 

  13. H. W. Knobloch, A. Isidori, and D. Flockerzi (1993). Topics in Control Theory, Birkhauser, Berlin, Germany.

    Google Scholar 

  14. V. Kucera, and C.E. de Souza (1995). A necessary and sufficient condition for output feedback stabilizability. Automatica, 31(9), 1357-1359.

    Article  Google Scholar 

  15. F. L. Lewis (1992). Applied Optimal Control, Digital Design and Implementation. Prentice Hall.

    Google Scholar 

  16. F. L. Lewis, V. L. Syrmos (1995). Optimal Control, 2nd edition, Wiley-Interscience.New York.

    Google Scholar 

  17. D. D Moerder, and A. J. Calise (1985). Convergence of a Numerical Algorithm for calculating optimal output feedback gains. IEEE Transactions on Automatic Control, 30(9), 900-903.

    Article  Google Scholar 

  18. T. R. Parks, “Manual for Model 210/210a Rectilinear Control Systems” Educational Control Products.

    Google Scholar 

  19. B. L. Stevens, and F. L. Lewis (2003) Aircraft Control and Simulation, 2nd ed, Wiley Interscience, New York.

    Google Scholar 

  20. Syrmos, V. L., Abdallah, C.; Dorato, P., “Static output feedback: a survey,” Proceedings of 33rd IEEE Conference on Decision and Control, Orlando, FL, 1994, pp. 837-842.

    Google Scholar 

  21. A. Trofino-Neto, and V. Kucera (1993). Stabilization via static output feedback. IEEE Transactions on Automatic Control, 38(5), 764-765.

    Article  Google Scholar 

  22. K. Yang, R. Orsi, and J.B. Moore (2004) A projective algorithm for static output feedback stabilization. Symposium on System, Structure and Control,Oaxaca, (pp 263-268).

    Google Scholar 

  23. J.-T. Yu (2004). A convergent algorithm for Computing Stabilizing Static Output-Feedback Gains. IEEE Transactions on Automatic Control, 49(12), 2271-2275.

    Article  Google Scholar 

  24. G. Zames, Feedback and Optimal Sensitivity: Model reference Transformations, Multiplicative Seminorms, and Approximate Inverses, IEEE Trans. Automat. Contr., vol. 26(2), 1981, 301-320.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jyotirmay Gadewadikar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this paper

Cite this paper

Gadewadikar, J., Bhilegaonkar, A., Lewis, F., Kuljaca, O. (2010). Results on H-Infinity Static Output-Feedback Control of an Electro-Mechanical System. In: Iskander, M., Kapila, V., Karim, M. (eds) Technological Developments in Education and Automation. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3656-8_24

Download citation

Publish with us

Policies and ethics