Skip to main content

Variational Multiscale Theory of LES Turbulence Modeling

  • Conference paper
  • First Online:
  • 1910 Accesses

Part of the book series: ERCOFTAC Series ((ERCO,volume 13))

Abstract

We present an LES-type variational multiscale theory of turbulence. Our approach derives completely from the incompressible Navier–Stokes equations and does not employ any ad hoc devices, such as eddy viscosities. We tested the formulation on a turbulent channel flow. In the calculations, we employed quadratic and cubic B-Splines. The numerical results are very good and confirm the viability of the theoretical framework. (This paper is excerpted from Bazilevs et al. [1], which is a much more comprehensive presentation of the theory, algorithms, implementation, and numerical studies. The reader is referred to it for further elaboration and many additional details.)

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Y. Bazilevs, V.M. Calo, J.A. Cottrel, T.J.R. Hughes, A. Reali, and G. Scovazzi. Variational multiscale residual-based turbulence modeling for large eddy simulation of incompressible flows. Computer Methods in Applied Mechanics and Engineering, 197:173–201, 2007.

    Article  MATH  MathSciNet  Google Scholar 

  2. Y. Bazilevs and T.J.R. Hughes. Weak imposition of Dirichlet boundary conditions in fluid mechanics. Computers and Fluids, 36:12–26, 2007.

    Article  MATH  MathSciNet  Google Scholar 

  3. J. Holmen, T.J.R. Hughes, A.A. Oberai, and G.N. Wells. Sensitivity of the scale partition for variational multiscale LES of channel flow. Physics of Fluids, 16:824–827, 2004.

    Article  Google Scholar 

  4. T. J. R. Hughes, G. Feijóo., L. Mazzei, and J. B. Quincy. The variational multiscale method – A paradigm for computational mechanics. Computer Methods in Applied Mechanics and Engineering, 166:3–24, 1998.

    Article  MATH  MathSciNet  Google Scholar 

  5. T.J.R. Hughes, A.A. Oberai, and L. Mazzei. Large-eddy simulation of turbulent channel flows by the variational multiscale method. Physics of Fluids, 13: 1784–1799, 2001.

    Article  Google Scholar 

  6. T.J.R. Hughes and G. Sangalli. Variational multiscale analysis: the fine-scale Green’s function, projection, optimization, localization, and stabilized methods. SIAM Journal of Numerical Analysis, 45:539–557, 2007.

    Article  MATH  MathSciNet  Google Scholar 

  7. T.J.R. Hughes, G. Scovazzi, and L.P. Franca. Multiscale and stabilized methods. In E. Stein, R. de Borst, and T. J. R. Hughes, editors, Encyclopedia of Computational Mechanics, Vol. 3, Computational Fluid Dynamics, chapter 2. Wiley, 2004.

  8. R. Moser, J. Kim, and R. Mansour. DNS of turbulent channel flow up to Re = 590. Physics of Fluids, 11:943–945, 1999.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Bazilevs .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this paper

Cite this paper

Bazilevs, Y., Calo, V.M., Hughes, T.J.R., Scovazzi, G. (2010). Variational Multiscale Theory of LES Turbulence Modeling. In: Armenio, V., Geurts, B., Fröhlich, J. (eds) Direct and Large-Eddy Simulation VII. ERCOFTAC Series, vol 13. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3652-0_16

Download citation

  • DOI: https://doi.org/10.1007/978-90-481-3652-0_16

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-3651-3

  • Online ISBN: 978-90-481-3652-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics