Skip to main content

Density Functional Theory

  • Chapter
  • First Online:
Nucleation Theory

Part of the book series: Lecture Notes in Physics ((LNP,volume 860))

  • 5596 Accesses

Abstract

Classical phenomenological description of nucleation is based on the capillarity approximation treating all droplets (clusters) as if they were macroscopic objects characterized by a well defined rigid boundary of radius \(R\) with a bulk liquid density inside \(R\) and bulk vapor density outside \(R\). Moreover, the surface free energy of the cluster is the same as for the planar interface at the same temperature, and therefore is characterized by the planar surface tension.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Historically the DFT in the theory of fluids originates from the quantum mechanical ideas formulated by Hohenberg and Kohn [4] and Kohn and Sham [5]; these authors showed that the intrinsic part of the ground state energy of an inhomogeneous electron liquid can be cast in the form of a unique functional of the electron density \(\rho _e(\mathbf{r})\). By doing so the quantum many-body problem—the solution of the many-electron Shrödinger equation—is replaced by a variational one-body problem for an electron in an effective potential field.

References

  1. C. Ebner, W.F. Saam, D. Stroud, Phys. Rev. A 14, 2264 (1976)

    Article  ADS  Google Scholar 

  2. R. Evans, Adv. Phys. 28, 143 (1979)

    Article  ADS  Google Scholar 

  3. R. Evans, Density functionals in the theory of nonuniform fluids. in Fundamentals of Inhomogeneous Fluids, ed. by D. Henderson (Marcel Dekker, New York 1992), p. 85

    Google Scholar 

  4. P. Hohenberg, W. Kohn, Phys. Rev. 136, B864 (1964)

    Article  MathSciNet  ADS  Google Scholar 

  5. W. Kohn, L.J. Sham, Phys. Rev. 140, A1133 (1965)

    Google Scholar 

  6. D.W. Oxtoby, R. Evans, J. Chem. Phys. 89, 7521 (1988)

    Google Scholar 

  7. D.W. Oxtoby, in Fundamentals of Inhomogeneous Fluids, ed. by D. Henderson (Marcel Dekker, New York, 1992), Chap. 10

    Google Scholar 

  8. D.W. Oxtoby, J. Phys. Cond. Matt. 4, 7627 (1992)

    Google Scholar 

  9. X.C. Zeng, D.W. Oxtoby, J. Chem. Phys. 94, 4472 (1991)

    Article  ADS  Google Scholar 

  10. V. Talanquer, D.W. Oxtoby, J. Chem. Phys. 99, 4670 (1993)

    Google Scholar 

  11. V. Talanquer, D.W. Oxtoby, J. Chem. Phys. 100, 5190 (1994)

    Google Scholar 

  12. A.R. Denton, N.W. Ashcroft, Phys. Rev. A 39, 4701 (1989)

    Google Scholar 

  13. V.I. Kalikmanov, Statistical Physics of Fluids. Basic Concepts and Applications (Springer, Berlin, 2001)

    Google Scholar 

  14. J.S. Rowlinson, B. Widom, Molecular Theory of Capillarity (Clarendon Press, Oxford, 1982)

    Google Scholar 

  15. W.A. Curtin, N.W. Ashcroft, Phys. Rev. A 32, 2909 (1985)

    Google Scholar 

  16. D. Weeks, D. Chandler, H.C. Andersen, J. Chem. Phys. 54, 5237 (1971)

    Google Scholar 

  17. N.F. Carnahan, K.E. Starling, J. Chem. Phys. 51, 635 (1969)

    Google Scholar 

  18. C.C.M. Luijten, Ph.D. Thesis, Eindhoven University, 1999

    Google Scholar 

  19. A.G. Chapela, G. Saville, S.M. Thompson, J.S. Rowlinson, J. Chem. Soc. Faraday Trans. II 73, 1133 (1977)

    Google Scholar 

  20. S. Dietrich, in Phase Transitions and Critical Phenomena, vol. 12, ed. by C. Domb, J.L. Lebowitz (Academic Press, New York 1988), p. 1

    Google Scholar 

  21. R. Evans, J. Phys. Condens. Matter 2, 8989 (1990)

    Google Scholar 

  22. B. Götzelmann et al., Europhys. Lett. 47, 398 (1999)

    Google Scholar 

  23. J. Wölk, R. Strey, J. Phys. Chem. B 105, 11683 (2001)

    Google Scholar 

  24. D.G. Labetski, V. Holten, M.E.H. van Dongen, J. Chem. Phys. 120, 6314 (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. I. Kalikmanov .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Kalikmanov, V.I. (2013). Density Functional Theory. In: Nucleation Theory. Lecture Notes in Physics, vol 860. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3643-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-90-481-3643-8_5

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-3642-1

  • Online ISBN: 978-90-481-3643-8

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics