Skip to main content

Heterogeneous Nucleation

  • Chapter
  • First Online:
Book cover Nucleation Theory

Part of the book series: Lecture Notes in Physics ((LNP,volume 860))

Abstract

Heterogeneous nucleation is a first order phase transition in which molecules of the parent phase nucleate onto surfaces forming embryos of the new phase. These preexisting foreign particles are usually called condensation nuclei (CN). To discriminate between the cluster and condensation nuclei, we call CN “solid”, the cluster phase “liquid” and the parent phase “vapor”.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Note, that a possibility of a negative tension of the three-phase contact line was already mentioned by Gibbs [18].

  2. 2.

    Note, that if in (15.52) the bulk Fletcher factor \(q(m_\mathrm{{eq}})\) is used instead of \(q(m_t)\), the critical cluster size, maximizing \(\varDelta G\), would violate the Kelvin equation.

References

  1. M. Ganero-Castano, J. Fernandez de la Mora, J. Chem. Phys. 117, 3345 (2002)

    Google Scholar 

  2. J.L. Katz, J. Fisk, M. Chakarov, J. Chem. Phys. 101, 2309 (1994)

    Google Scholar 

  3. A.B. Nadykto, F. Yu, Atmosd. Chem. Phys. 4, 385 (2004)

    Google Scholar 

  4. H. Rabeony, P. Mirabel, J. Phys. Chem. 91, 1815 (1987)

    Google Scholar 

  5. R.J. Charlson, T. Wigley, Sci. Am. 270, 48 (1994)

    Google Scholar 

  6. N.N. Fletcher, J. Chem. Phys. 29, 572 (1958)

    Google Scholar 

  7. M. Lazaridis, M. Kulmala, A. Laaksonen, J. Aerosol Sci. 22, 823 (1991)

    Google Scholar 

  8. M. Lazaridis, J. Coll. Interface Sci. 155, 386 (1993)

    Google Scholar 

  9. G.M. Pound, M.T. Simnad, L. Yang, J. Chem. Phys. 22, 1215 (1954)

    Google Scholar 

  10. H.R. Pruppacher, J.C. Pflaum, J. Coll. Int. Sci. 52, 543 (1975)

    Google Scholar 

  11. J. Frenkel, Kinetic Theory of Liquids (Clarendon, Oxford, 1946)

    Google Scholar 

  12. J.S. Sheu, J.R. Maa, J.L. Katz, J. Stat. Phys. 52, 1143 (1988)

    Google Scholar 

  13. H.R. Pruppacher, J.D. Klett, Microphysics of Clouds and Precipitation (Reidel, Dordrecht, 1978)

    Google Scholar 

  14. P. Hamill et al., J. Aerosol Sci. 13, 561 (1982)

    Google Scholar 

  15. J. Israelashvili, Intermolecular and Surface Forces (Cambridge University Press, Cambridge, 1992)

    Google Scholar 

  16. M. Lazaridis, I. Ford, J. Chem. Phys. 99, 5426 (1993)

    Google Scholar 

  17. J.S. Rowlinson, B. Widom, Molecular Theory of Capillarity (Clarendon Press, Oxford, 1982)

    Google Scholar 

  18. J.W. Gibbs, The Scientific Papers (Ox Bow, Woodbridge, NJ, 1993)

    Google Scholar 

  19. R.D. Gretz, J. Chem. Phys. 45, 3160 (1966)

    Google Scholar 

  20. L.F. Evans, J.E. Lane, J. Atmos. Sci. 30, 326 (1973)

    Google Scholar 

  21. J. Indekeu, Physica A 183, 439 (1992)

    Google Scholar 

  22. R. Lipowsky, J. Phys. II (France) 2, 1825 (1992)

    Google Scholar 

  23. L. Schimmele, M. Napiorkowski, S. Dietrich, J. Chem. Phys. 127, 164715 (2007)

    Google Scholar 

  24. A. Sheludko, V. Chakarov, B. Toshev, J. Coll. Int. Sci. 82, 83 (1981)

    Google Scholar 

  25. B. Lefevre, A. Saugey, J.L. Barrat, J. Chem. Phys. 120, 4927 (2004)

    Google Scholar 

  26. T. Pompe, S. Herminghaus, Phys. Rev. Lett. 85, 1930 (2000)

    Google Scholar 

  27. T. Pompe, Phys. Rev. Lett. 89, 076102 (2002)

    Google Scholar 

  28. J.K. Berg, C.M. Weber, H. Riegler, Phys. Rev. Lett. 105, 076103 (2010)

    Google Scholar 

  29. A.I. Hienola, P.M. Winkler, P.E. Wagner et al., J. Chem. Phys. 126, 094705 (2007)

    Google Scholar 

  30. P. Winkler, Ph.D. Thesis, University of Vienna, 2004

    Google Scholar 

  31. D. Winter, P. Virnau, K. Binder, Phys. Rev. Lett. 103, 225703 (2009)

    Google Scholar 

  32. R.J. Baxter, Exactly Solved Models in Statistical Mechanics (Academics Press, London, 1982)

    Google Scholar 

  33. R.C. Reid, J.M. Prausnitz, B.E. Poling, The Properties of Gases and Liquids (McGraw-Hill, New York, 1987)

    Google Scholar 

  34. J.Y. Wang, S. Betelu, B.M. Law, Phys. Rev. E 63, 031601 (2001)

    Google Scholar 

  35. J. Indekeu, Int. J. Mod. Phys. B 8, 309 (1994)

    Google Scholar 

  36. I. Szleifer, B. Widom, Mol. Phys. 75, 925 (1992)

    Google Scholar 

  37. P.E. Wagner, D. Kaller, A. Vrtala et al., Phys. Rev. E 67, 021605 (2003)

    Google Scholar 

  38. M. Kulmala, A. Lauri, H. Vehkamaki et al., J. Phys. Chem. B 105, 11800 (2001)

    Google Scholar 

  39. M. Lazaridis, M. Kulmala, B.Z. Gorbuniv, J. Aerosol Sci. 23, 457 (1992)

    Google Scholar 

  40. H. Vehkamäki, Classical Nucleation Theory in Multicomponent Systems (Springer, Berlin, 2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. I. Kalikmanov .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Kalikmanov, V.I. (2013). Heterogeneous Nucleation. In: Nucleation Theory. Lecture Notes in Physics, vol 860. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3643-8_15

Download citation

  • DOI: https://doi.org/10.1007/978-90-481-3643-8_15

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-3642-1

  • Online ISBN: 978-90-481-3643-8

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics