Skip to main content

Laser-Matter Interaction in Transparent Materials: Confined Micro-explosion and Jet Formation

  • Conference paper
Extreme Photonics & Applications

High intensity laser beam was tightly focussed inside bulk of dielectrics at adjustable distance from the outer boundary (1–15 µm). Laser— matter interaction region is thus confined inside a cold and dense material, with and without boundary effects. In what follows we first describe self-consistently the relevant laser—matter interaction physics. At high intensity of the laser beam in a focal region (> 6 × 1012 W/cm2) the material is converted into a hot and dense plasma. The shock and rarefaction waves propagation, formation of a void inside the target are all described. Then, a model was developed to predict size of the voids in the bulk of materials, i.e. without boundary effects. Results were compared to experimental observations. The size of a void formed by 800 nm 150 fs laser pulses is ~0.2 μm3. Finally we present new results in confined geometries and we show that jets can develop sizes and expansion velocities depending both on energy laser and distance from the rear surface. This jet formation regime, apparently new, can be related to some LIFT process, with submicrometer diameter jets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Born, M., Wolf, E.: Principles of optics: electromagnetic theory of propagation, interference and diffraction of light, 7th ed. Cambridge University Press, New York (1999).

    Google Scholar 

  • Gamaly, E.G., Rode, A.V., Luther-Davies, B., Tikhonchuk, V.T.: Ablation of solids by femtosecond lasers: ablation mechanism and ablation thresholds for metals and dielectrics. Phys. Plasmas 9(3), 949–957 (2002).

    Article  CAS  Google Scholar 

  • Gamaly, E. G., Juodkazis, S., Rode, A. V., Luther-Davies, B., Misawa, H.: Recording and reading 3-D structures in transparent solids, ">">">>Proc. of the 1 ">">">>st ">">">>Pac. Int. Conf. on Appl. of Lasers and Opt., ">">">>19-21 April, 2004, Melbourne, Australia, 19–21 (2004).

    Google Scholar 

  • Gamaly, E.G., Juodkazis, S., Nishimura, K., Misawa, H., Luther-Davies, B., Hallo, L., Nicolaí, P., Tikhonchuk, V.T.: Laser—matter interaction in the bulk of a transparent solid: confined microexplosion and void formation. Phys. Rev. B 73(21), 214101 (2006)

    Article  Google Scholar 

  • Glezer, E.N., Milosavjevic, M., Huang, L., Finlay, R.J., Her, T.-H., Callan, J.P., Masur, E.: Three-dimensional optical storage inside transparent materials. Opt. Lett. 21(24), 2023–2025 (1996)

    Article  CAS  Google Scholar 

  • Hallo, L., Bourgeade, A., Tikhonchuk, V.T., Mézel, C., Breil, J.: Model and numerical simulations of the propagation and absorption of a short laser pulse in a transparent dielectric material: Blast-wave launch and cavity formation. Phys. Rev. B 76, 024101 (2007)

    Article  Google Scholar 

  • Hallo, L., Bourgeade, A., Mézel, C., Travaillé, G., Hébert, D., Chimier, B., Schurtz, G., Tikhonchuk, V.T.: Formation of nanocavities in dielectrics: influence of equation of state. Appl. Phys. A 92(4), 837–841 (2008)

    Article  CAS  Google Scholar 

  • Juodkazis, S., Kondo, T., Mizeikis, V., Matsuo, S., Misawa, H., Vanagas, E., Kudryashov, I.: Microfabrication of three-dimensional structures in polymer and glass by femtosecond pulses, ">">">>Proc. Bi-lateral Conf. Optoelectron. and Magn. Mater., ">">">>25–26 May, 2002, Taipei, ROC, 27–29 (available as arXiv: physics/0205025v19) (2002)

    Google Scholar 

  • Juodkazis, S., Rode, A.V., Gamaly, E.G., Matsuo, S., Misawa, H.: Recording and reading of three-dimensional optical memory in glasses. Appl. Phys. B 77(2–3), 361–368 (2003)

    Article  CAS  Google Scholar 

  • Kruer, W.L.: The physics of laser plasma interactions. Addison-Wesley, New York (1988)

    Google Scholar 

  • Linde, D. von der, Schuler, H.: Breakdown threshold and plasma formation in femtosecond laser—solid interaction. J. Opt. Soc. Am. B 13(1), 216–222 (1996)

    Article  Google Scholar 

  • Malaise, F., Chevalier, J.-M., Bertron, I., Malka, F.: Investigation fused silica dynamic behaviour. J. Phys. IV, 134, 929–934 (2006)

    Article  CAS  Google Scholar 

  • Mézel, C., Hallo, L., Bourgeade, A., Hébert, D., Tikhonchuk, V.T., Chimier, B., Nkonga, B., Schurtz, G., Travaillé, G.: Formation of nanocavities in dielectrics: A self-consistent modeling. Phys. Plasmas 15(9), 093504 (2008)

    Article  Google Scholar 

  • More, R.H., Warren, K.H., Young, D.A., Zimmerman, G.G.: A new quotidian equation of state (QEOS) for hot dense matter. Phys. Fluids 31(10), 3059–3078 (1988)

    Article  CAS  Google Scholar 

  • Qiu, J., Miura, K., Inouye, H., Nishi, J., Hirao, K.: Three-dimensional optical storage inside a silica glass by using a focused femtosecond pulsed laser. Nucl. Instrum. Methods Phys. Res. B 141(1–4), 699–703 (1998)

    Article  CAS  Google Scholar 

  • Ringeisen, B.R., Othon, C.M., Barron, J.A., Young, D., Spargo, B.J.: Jets-based methods to print living cells. Biotechnol. J. 1(9), 930–948 (2006)

    Article  CAS  Google Scholar 

  • Schaffer, C.B., Garcia, J.F., Mazur, E.: Bulk heating of transparent materials using a high-repetition rate femtosecond laser. Appl. Phys. A 76(3), 351–354 (2003)

    Article  CAS  Google Scholar 

  • Stuart, B.C., Feit, M.D., Rubenchick, A.M., Shore, B.W., Perry, M.D.: Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses. Phys. Rev. Lett. 74(12), 2248–2251 (1995)

    Article  CAS  Google Scholar 

  • Watanabe, M., Sun, H., Juodkazis, S., Takahashi, T., Matsumoto, S., Suzuki, Y., Nishi, J., Misawa, H.: Three-dimensional optical data storage in vitreous silica. J. Appl. Phys. 37(12B), L1527–L1530 (1998)

    Google Scholar 

  • Zel'dovich, Y.B., Raizer, Y.P.: Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena. Dover, New York (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this paper

Cite this paper

Hallo, L., Mézel, C., Bourgeade, A., Hébert, D., Gamaly, E.G., Juodkazis, S. (2010). Laser-Matter Interaction in Transparent Materials: Confined Micro-explosion and Jet Formation. In: Hall, T.J., Gaponenko, S.V., Paredes, S.A. (eds) Extreme Photonics & Applications. NATO Science for Peace and Security Series B: Physics and Biophysics. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3634-6_8

Download citation

Publish with us

Policies and ethics