A Web-Based Software System for Model Integration in Impact Assessments of Agricultural and Environmental Policies

  • Jan-Erik Wien
  • Andrea Emilio Rizzoli
  • Rob KnapenEmail author
  • Ioannis Athanasiadis
  • Sander Janssen
  • Lorenzo Ruinelli
  • Ferdinando Villa
  • Mats Svensson
  • Patrik Wallman
  • Benny Jonsson
  • Martin van Ittersum


The SEAMLESS consortium develops a computerized and integrated framework (SEAMLESS-IF) to assess the impacts on environmental and economic sustainability of a wide range of policies and technological improvements across a number of scales. In SEAMLESS-IF, different type of models are linked into model chains, where each model uses the outputs of another model as its inputs and ultimately indicators are calculated. This type of integrated modelling requires interoperability, which is the ability of two or more systems or components to exchange information and to use the information that has been exchanged.

In SEAMLESS, we have developed an ontology to establish a set of shared domain concepts. To support a semantic-aware approach to model integration, all the commonly shared data types in SEAMLESS are declared in the ontology (starting from projects, describing the elements of an impact assessment study, down to the fine detail of the variables exchanged among the models). This is an important shift in the common approach to modelling: modellers specify the data requirements of their models on a higher level, i.e. that of an ontology, which is automatically transformed into a relational database model, to which “data collecting” activities need to comply with.

SEAMLESS-IF is based on a layered, client-server architecture. The end user interacts with the system by means of two web-based Graphical User Interfaces (GUI) that run as clients. The server-client architecture of SEAMLESS-IF allows for future applications to be developed and linked to the existing server, in order to cater for specific needs of different user groups.


Model Chain Mutual Understanding Knowledge Engineer Semantic Interoperability Thin Client 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Athanasiadis, I. N., & Janssen, S. (2008). Semantic mediation for environmental model components integration. Information Technologies in Environmental Engineering, 1, 3-11.Google Scholar
  2. Bezlepkina, I., Domínguez, I.P., Heckelei, T., Romstad, E., & Oude Lansink, A.G.J.M. (2007). EXPAMOD: Component to statistically extrapolate from FSSIM models to other farm types and regions including aggregation to NUTS2: Motivation, description and prototype. PD3.6.11.2, SEAMLESS Integrated Project, EU 6th Framework Programme, contract no. 010036-2 (p. 28), from
  3. Britz, W., Pérez, I., Zimmermann, A., & Heckelei, T. (2007). Definition of the CAPRI core modelling system and interfaces with other components of SEAMLESS-IF. SEAMLESS Rep. No. 26, SEAMLESS Integrated Project, EU 6th Framework Programme, contract no. 010036-2 (p. 116), from
  4. Cash, D. W., Clark, W. C., Alcock, F., Dickson, N. M., Eckley, N., Guston, D. H., et al. (2003). Science and technology for sustainable development special feature: Knowledge systems for sustainable development. PNAS, 100(14), 8086-8091.PubMedCrossRefGoogle Scholar
  5. Dahl, O.-J., Dijkstra, E. W., & Hoare, C. A. R. (1968). Structured programming. London: Academic.Google Scholar
  6. Farquhar, A., Fikes, R., Pratt, W., & Rice, J. (1995). Collaborative ontology construction for information integration (Tech. Rep. No. KSL-95-63). Stanford, CA: Knowledge Systems Laboratory, Department of Computer Science, Stanford University.Google Scholar
  7. Fowler, M. (2007). Patterns of enterprise application architecture. Boston, MA: Addison-Wesley.Google Scholar
  8. Gamma, E., Helm, R., Johnson, R., & Vlissides, J. M. (1994). Design patterns: Elements of reusable object-oriented software. Upper Saddle River, NJ: Pearson Education.Google Scholar
  9. Gijsbers, P.J.A., & Gregersen, J.B. (2005). OpenMI: Glue for model integration. In A. Zerger & R.M. Argent (Eds.), MODSIM 2005 International Congress on Modelling and Simulation (pp. 648-654). Australia/New Zealand: Modelling and Simulation Society.Google Scholar
  10. Gijsbers, P.J.A., Wien, J.E., Verweij, P., & Knapen, R. (2006). Advances in the OpenMI. In Proceedings of 7th International Conference on Hydroinformatics, HIC 2006 (pp. 72-81).Google Scholar
  11. Gregersen, J. B., Gijsbers, P. J. A., & Westen, S. J. P. (2007). OpenMI: Open modelling interface. Journal of Hydroinformatics, 9(3), 175-191.CrossRefGoogle Scholar
  12. Griffen, E. M. (1997). A first look at communication theory. New York: McGraw-Hill.Google Scholar
  13. Gruber, T. R. (1993). A translation approach to portable ontology specifications. Knowledge Acquisition, 5, 199-220.CrossRefGoogle Scholar
  14. Gruber, T. R. (1995). Toward principles for the design of ontologies used for knowledge sharing. International Journal of Human and Computer Studies, 43(5/6), 907-928.CrossRefGoogle Scholar
  15. Holsapple, C. W., & Joshi, K. D. (2002). A collaborative approach to ontology design. Communications of the ACM, 45(2), 42-47.CrossRefGoogle Scholar
  16. IEE (Institute of Electrical and Electronics Engineers). (1990). IEEE standard computer dictionary: A compilation of IEEE standard computer glossaries. New York: IEEE.Google Scholar
  17. Janssen, S. J. C., Andersen, E., Athanasiadis, I. N., & van Ittersum, M. K. (2009). A database for integrated assessment of European agricultural systems. Environmental Science and Policy 12(5), 573-587.Google Scholar
  18. Janssen, S.J.C., Wien, J.J.F., Li, H., Athanasiadis, I.N., Ewert, F., Knapen, M.J.R., Huber, D., Thérond, O., Rizzoli, A., Belhouchette, H., Svensson, M., & van Ittersum, M.K. (2007). Defining projects and scenarios for integrated assessment modelling using ontology. In L. Oxley & D. Kulasiri (Eds.), MODSIM 2007 International Congress on Modelling and Simulation (pp. 2055-2061). Australia/New Zealand: Modelling and Simulation Society. Google Scholar
  19. Kilov, H. (1990). From semantic to object-oriented data modeling. In First International Conference on System Integration (pp. 385-393).Google Scholar
  20. Knapen, M.J.R., Verweij, P.J.F.M., & Wien, J.J.F. (2007). Applying enterprise application architectures in integrated modelling. In L. Oxley & D. Kulasiri (Eds.), MODSIM 2007 International Congress on Modelling and Simulation (pp. 798-804). Australia/New Zealand: Modelling and Simulation Society. Google Scholar
  21. Neches, R., Fikes, R., Finin, T., Gruber, T., Patil, R., Senator, T., et al. (1991). Enabling technology for knowledge sharing. AI Magazine, 12(3), 36-56.Google Scholar
  22. Ogden, C. K., & Richards, I. A. (1923). The meaning of meaning (8th ed.). New York: Harcourt, Brace & World.Google Scholar
  23. Patel-Schneider, P.F., Hayes, P., & Horrocks, I. (2004). OWL web ontology language semantics and abstract syntax. W3C Recommendation. Retrieved from
  24. Pennington, D.D., Madin, J., Villa, F., & Athanasiadis, I.N. (2007). Computer-supported collaborative knowledge modeling in ecology. Workshop on social and collaborative construction of structured knowledge. In 16th International World Wide Web Conference (WWW2007). CEUR Workshop Proceedings, 273. BANFF, Canada published online.Google Scholar
  25. Raskin, J. (2000). The humane interface - new directions for designing interactive systems. New York: ACM Press.Google Scholar
  26. Rizzoli, A.E., Athanasiadis, I.N., & Villa, F. (2007a, September). Delivering environmental knowledge: A semantic approach. In O. Hryniewicz, J. Studzinski, & M. Romaniuk (Eds.), Proceedings of 21st International Conference on Informatics for Environmental Protection: EnviroInfo 2007 (Vol. 1, pp. 43-50). Germany: Shaker Verlag.Google Scholar
  27. Rizzoli, A. E., Donatelli, M., Athanasiadis, I. N., Villa, F., & Huber, D. (2008). Semantic links in integrated modelling frameworks. Mathematics and Computers in Simulation, 78(2-3), 412-423.CrossRefGoogle Scholar
  28. Rizzoli, A., Li, H., Athanasiadis, I.N., & Marechal, F. (2007b). Semantically rich interfaces for simulation interoperability. 2007 European Simulation Interoperability Workshop (p. 60), Simulation Interoperability Standards Organization, Genoa, Italy.Google Scholar
  29. Rotmans, J., & Dowlatabadi, H. (1998). Integrated assessment modeling. In S. Rayner & E.L. Malone (Eds.), Human choice and climate change: Tools for policy analysis (Vol. 3, pp. 291-377). Columbus, OH: Batelle Press.Google Scholar
  30. Rotmans, J., & van Asselt, M. (1996). Integrated assessment: A growing child on its way to maturity. Climatic Change, 34(3-4), 327-336.CrossRefGoogle Scholar
  31. Schoemaker, P. J. H. (1993). Multiple scenario development: Its conceptual and behavioral foundation. Strategic Management Journal, 14(3), 193.CrossRefGoogle Scholar
  32. Scholten, H., Kassahun, A., Refsgaard, J. C., Kargas, T., Gavardinas, C., & Beulens, A. J. M. (2007). A methodology to support multidisciplinary model-based water management. Environmental Modelling and Software, 22(5), 743-759.CrossRefGoogle Scholar
  33. Sølvberg, A. (1998). Data and what they refer to. In P. P. Chen (Ed.), Concept modeling: Historical perspectives and future trends. Berlin: Springer.Google Scholar
  34. van der Aalst, W. M. P., & van der Hee, K. M. (2002). Workflow management: Models, methods and systems. Cambridge: MIT Press.Google Scholar
  35. Van Ittersum, M. K., & Donatelli, M. (2003). Modelling cropping systems [Special issue]. European Journal of Agronomy, 18(3-4), 187-394.CrossRefGoogle Scholar
  36. Van Ittersum, M. K., Ewert, F., Heckelei, T., Wery, J., Alkan Olsson, J., Andersen, E., et al. (2008). Integrated assessment of agricultural systems - a component based framework for the European Union (SEAMLESS). Agricultural Systems, 96, 150-165.CrossRefGoogle Scholar
  37. Verweij, P.J.F.M., Knapen, M.J.R., & Wien, J.J.F. (2007). The use of OpenMI in model based integrated assessments. In L. Oxley & D. Kulasiri (Eds.), MODSIM 2007 International Congress on Modelling and Simulation (pp. 1166-1171). Australia/New Zealand: Modelling and Simulation Society.Google Scholar
  38. Villa, F. (2005). A semantic model of computation for natural system modelling. In A. Zerger & R.M. Argent (Eds.), MODSIM 2005 International Congress on Modelling and Simulation (pp. 751-757). Australia/New Zealand: Modelling and Simulation Society.Google Scholar
  39. Villa, F., Athanasiadis, I. N., & Rizzoli, A. E. (2009). Modelling with knowledge: A review of emerging semantic approaches to environmental modelling. Environmental Modelling and Software, 24(5), 577-674.CrossRefGoogle Scholar
  40. Villa, F., Donatelli, M., Rizzoli, A.E., Krause, P., Kralisch, S., & van Evert, F.K. (2006). Declarative modelling for architecture independence and data/model integration: A case study. In A. Voinov, A. Jakeman, & A.E. Rizzoli (Eds.), Proceedings of the iEMSs Third Biennial Meeting, “Summit on Environmental Modelling and Software”. Burlington, VT: The International Environmental Modelling and Software Society.Google Scholar
  41. Wien, J. J. F., Knapen, M. J. R., Janssen, S. J. C., Verweij, P. J. F. M., Athanasiadis, I. N., Li, H., et al. (2007). Using ontology to harmonize knowledge concepts in data and models. In L. Oxley & D. Kulasiri (Eds.), MODSIM 2007 International Congress on Modelling and Simulation (pp. 1959-1965). Australia/New Zealand: Modelling and Simulation Society.Google Scholar
  42. Zander, P., & Kächele, H. (1999). Modelling multiple objectives of land use for sustainable development. Agricultural Systems, 59, 311-325.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Jan-Erik Wien
    • 1
  • Andrea Emilio Rizzoli
    • 2
  • Rob Knapen
    • 1
    Email author
  • Ioannis Athanasiadis
    • 2
  • Sander Janssen
    • 1
  • Lorenzo Ruinelli
    • 3
  • Ferdinando Villa
    • 4
  • Mats Svensson
    • 4
  • Patrik Wallman
    • 5
  • Benny Jonsson
    • 5
  • Martin van Ittersum
    • 6
  1. 1.Center for Geo-Information, Alterra Wageningen URWageningenThe Netherlands
  2. 2.IDSIA - Istituto Dalle Molle di Studi sull’Intelligenza ArtificialeMannoSwitzerland
  3. 3.AntOptimaLuganoSwitzerland
  4. 4.Gund Institute for Ecological Economics, University of VermontBurlingtonUSA
  5. 5.Centre for Sustainability Studies, Lund UniversityLundSweden
  6. 6.Plant Production Systems Group, Wageningen UniversityWageningenThe Netherlands

Personalised recommendations