Skip to main content

Visualising Changes in Agricultural Landscapes

  • Chapter
  • First Online:
Environmental and Agricultural Modelling

Abstract

Although land managers and policy-makers generally have a good experience of what result can be expected from their decisions, they are often faced with difficulty when trying to communicate the visual impact of a future management option to all stakeholders (local and regional decision-makers, land managers, landscape planners, and various communities involved in outdoor activities). Three-dimensional visualisation of the landscape is often used for communicating with the stakeholders. Static, web-based landscape visualisation tools have made considerable progress in recent years, such as for example Google Earth, covering the entire planet in 3D. Such visualisations are based on aerial (satellite) imagery, at a specific date, but are not dynamic. The challenge in methods for integrated assessment of agricultural systems (such as developed in SEAMLESS) is to view future changes in land use, according to scenarios.

A 3-D landscape visualisation component has been developed. It is to be launched at the end of a scenario simulation to allow for exploration of landscape changes. Pressures causing such changes will come from a bio-economic farm model; they are then translated into changes in the spatial configuration of the landscape. For each simulation, representing one new agricultural policy, SLE (Seamless Landscape Explorer) processes the input data to build a “virtual scene”, which is saved in a project file. Such files can be used to visualise a scene previously calculated by the land-modeller, for example from a different viewpoint or to produce a film by navigating within the scene. Satellite or aerial imagery or generated textures are draped over the Terrain. The different types of land-use are visualised thanks to a library of detailed textures, and vegetation can be added and visualised according to specific vegetation models. The building process then assembles the 3D landscape model, and displays it in the viewer.

Such qualitative outputs can be used in a post-modelling analysis, and/or in the negotiation phases. Such visualisation could have a significant implication for the choice of effective land-use policy, and could be used as a basis for discussion and negotiation within the community. An example of four different scenarios in the French Languedoc-Roussillon region is presented here.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alkan Olsson, J., Bockstaller, C., Stapleton, L.M., Ewert, F., Knapen, R., Therond, O., Geniaux, G., Bellon, S., Pinto Correira, T., Turpin, N., & Bezlepkina, I. (2009). A goal oriented indicator framework to support impact assessment of new policies for agri- environmental systems. Environmental Science and Policy, 12(5), 562-572.

    Google Scholar 

  • Appleton, K., & Lovett, A. (2003). GIS-based visualisation of rural landscapes: Defining ‘sufficient’ realism for environmental decision-making. Landscape and Urban Planning, 65, 117-131.

    Article  Google Scholar 

  • Appleton, K., & Lovett, A. (2005). GIS-based visualisation of development proposals: Reactions from planning and related professionals. Computers, Environment and Urban Systems, 29(3), 321-339.

    Article  Google Scholar 

  • Appleton, K., Lovett, A., Sünnenberg, G., & Dockerty, T. (2002). Rural landscape visualisation from FIS databases: A comparison of approaches, options and problems. Computers, Environment and Urban Systems, 26, 141-162.

    Article  Google Scholar 

  • Auclair, D., Barczi, J. F., Borne, F., & Etienne, M. (2001). Landscape visualisation software as a forest management decision support system. In A. Franc, O. Laroussinie & T. Karjalainen (Eds.), Criteria and indicators for sustainable forest management at the forest management unit level (pp. 207-214). Joensuu: European Forest Institute.

    Google Scholar 

  • Auclair, D., Barczi, J.-F., Borne, F., & Étienne, M. (2001). Assessing the visual impact of agroforestry management with landscape design software. Landscape Research, 26, 397-406.

    Article  Google Scholar 

  • Bell, S. (2001). Landscape pattern, perception and visualisation in the visual management of forests. Landscape and Urban Planning, 54, 204-211.

    Article  Google Scholar 

  • Bergen, S. D., Fridley, J. L., Ganter, M. A., & Schiess, P. (1995). Predicting the visual effect of forest operations. Journal of Forestry, 93, 33-37.

    Google Scholar 

  • Bishop, I. D., Hull, R. B., & Stock, C. (2005). Supporting personal world-views in an envisioning system. Environmental Modelling and Software, 20, 1459-1468.

    Article  Google Scholar 

  • Bishop, I. D., Stock, C., & Williams, K. J. (2008). Using virtual environments and agent models in multi-criteria decision-making. Land Use Policy, 26, 87-94.

    Article  Google Scholar 

  • Bishop, I. D., Wherrett, J. R., & Miller, D. R. (2001). Assessment of path choices on a country walk using a virtual environment. Landscape and Urban Planning, 52, 225-237.

    Article  Google Scholar 

  • Bloom, C. (2000). Terrain texture composition by blending in the frame buffer (“Splatting Textures”), from www.cbloom.com/3d/techdocs/splatting.txt

  • Boudon, F., Nouguier, C., & Godin, C. (2001). GEOM module manual. II. Developper guide (p. 600). Document de travail du Programme Modélisation des plantes, DT4-2001. Montpellier, France: CIRAD.

    Google Scholar 

  • Cartwright, W. (2008). Visualising alternative futures. In C. Pettit, W. Cartwright, I. Bishop, K. Lowell, D. Pullar & D. Duncan (Eds.), Landscape analysis and visualisation: Spatial models for natural resource management and planning (pp. 490-507). Berlin: Springer.

    Google Scholar 

  • Cheylan, J.P., & Gumuchian, H. (2002). L’évaluation des impacts des politiques publiques paysagères au sein des Parcs Naturels Régionaux en montagnes méditerranéennes: quelles méthodes? Quels outils? Méthodes et outils pour l’évaluation des impacts des PPP, Numéro spécial: Politiques publiques paysagères et Parcs Naturels Régionaux; pour une évaluation (pp. 13-24).

    Google Scholar 

  • Danahy, J. W. (1989). Irises in a landscape: An experiment in dynamic interaction and teaching design studio. In M. McCullough, W. J. Mitchell & P. Purcell (Eds.), Proceedings of the CAAD Futures’89, The electronic design studio: Architectural knowledge and media in the computer era (pp. 363-376). Cambridge, MA: MIT Press.

    Google Scholar 

  • Daniel, T. C. (1992). Data visualization for decision support in environmental management. Landscape Urban Planning, 21, 261-263.

    Article  Google Scholar 

  • Daniel, T. C. (2001). Wither scenic beauty? Visual landscape quality assessment in the 21st century. Landscape Urban Planning, 54, 267-281.

    Article  Google Scholar 

  • Day, A. M., & Willmott J. (2005). Compound textures for dynamic impostor rendering. Computers & Graphics, 29(1), 109-124.

    Google Scholar 

  • De Boer, W.H. (2000). Fast terrain rendering using geometrical mipmapping, from http://www.flipcode.com/articles/article_geomipmaps.shtml

  • Dockerty, T., Lovett, A., Sünnenberg, G., Appleton, K., & Parry, M. (2005). Visualising the potential impacts of climate change on rural landscapes. Computers, Environment and Urban Systems, 29, 297-320.

    Article  Google Scholar 

  • Ervin, S. M., & Hasbrouck, H. H. (2001). Landscape modelling: Digital techniques for landscape visualization. New York: McGraw-Hill.

    Google Scholar 

  • Gardner, R. H., & Urban, D. L. (2006). Neutral models for testing landscape hypotheses. Landscape Ecology, 22, 15-29.

    Article  Google Scholar 

  • Ghadirian, P., & Bishop, I. D. (2008). Integration of augmented reality and GIS: A new approach to realistic landscape visualisation. Landscape and Urban Planning, 86, 226-232.

    Article  Google Scholar 

  • Gobster, P. H., Nassauer, J. I., Daniel, T. C., & Fry, G. (2007). The shared landscape: What does aesthetics have to do with ecology? Landscape Ecology, 22, 959-972.

    Article  Google Scholar 

  • Google Inc. (2006). Sketchup user’s guide (p. 362), from http://download.sketchup.com/GSU/pdfs/GSUUsersGuide_WIN.pdf

  • Helming, K., Tscherning, K., König, B., Sieber, S., Wiggering, H., Kuhlman, T., et al. (2008). Ex ante impact assessment of land use changes in European regions—the SENSOR approach. In K. Helming, M. Perez-Soba & P. Tabbush (Eds.), Sustainability impact assessment of land use changes. Berlin: Springer.

    Chapter  Google Scholar 

  • Herwig, A., & Paar, P. (2002). Game engines: Tools for landscape visualization and planning? In E. Buhmann, U. Nothelfer & M. Pietsch (Eds.), Proceedings at Anhalt University of Applied Sciences, trends in GIS and virtualization in environmental planning and design (pp. 162-171). Heidelberg: Wichmann.

    Google Scholar 

  • Lange, E. (2001). The limits of realism: Perceptions of virtual landscapes. Landscape and Urban Planning, 54, 163-182.

    Article  Google Scholar 

  • Lange, E., & Bishop, I. (2001). Our visual landscape: Analysis, modeling, visualization and protection. Landscape and Urban Planning, 54, 1-3.

    Article  Google Scholar 

  • Lange, E., Hehl-Lange, S., & Brewer, M. J. (2008). Scenario-visualization for the assessment of perceived green space qualities at the urban-rural fringe. Journal of Environmental Management, 89, 245-256.

    Article  PubMed  Google Scholar 

  • Le Ber, F., Benoît, M., Schott, C., Mari, J.-F., & Mignolet, C. (2006). Studying crop sequences with CarrotAge, a HMM-based data mining software. Ecological Modelling, 191, 170-185.

    Article  Google Scholar 

  • Le Ber, F., Lavigne, C., Mari, J.F., Adamczyk, K., & Angevin, F. (2006b). GENEXP, un logiciel pour simuler des paysages agricoles en vue de l’étude de la diffusion de transgènes. Paper presented at the SAGEO 2006 International Conference on Spatial Analysis and GEOmatics; Research & Development, Strasbourg, FR. Retrieved from http://hal.archives-ouvertes.fr/docs/00/10/33/82/PDF/sageo06.pdf

  • Lovett, A. (2005). Futurescapes. Computers, Environment and Urban Systems, 29, 249-253.

    Article  Google Scholar 

  • Lovett, A., Kennaway, R., Sünnenberg, G., Cobb, D., Dolman, P., & O’Riordan, T. (2001). Visualising sustainable agricultural landscapes. In D. Unwin & P. Fisher (Eds.), Virtual reality in geography (pp. 102-130). London: Taylor & Francis.

    Chapter  Google Scholar 

  • MacFarlane, R., Stagg, H., Turner, K., & Lievesley, M. (2005). Peering through the smoke? Tensions in landscape visualisation. Computers, Environment and Urban Systems, 29, 341-359.

    Article  Google Scholar 

  • Mansergh, I., Lau, A., & Anderson, R. (2008). Geographic landscape visualisation in planning adaptation to climate change in Victoria, Australia. In C. Pettit, W. Cartwright, I. Bishop, K. Lowell, D. Pullar & D. Duncan (Eds.), Landscape analysis and visualisation: Spatial models for natural resource management and planning (pp. 469-487). Berlin: Springer.

    Google Scholar 

  • Muhar, A. (2001). Three-dimensional modelling and visualisation of vegetation for landscape simulation. Landscape and Urban Planning, 54, 5-17.

    Article  Google Scholar 

  • Nespoulous, A. (2004). Relations entre la dynamique de la végétation et la gestion sociale de l’espace: les garrigues du Pic Saint Loup. MA thesis, University of Montpellier III, p. 89.

    Google Scholar 

  • Orland, B., Budthimedhee, K., & Uusitalo, J. (2001). Considering virtual worlds as representations of landscape realities and as tools for landscape planning. Landscape and Urban Planning, 54, 139-148.

    Article  Google Scholar 

  • Paar, P., & Clasen, M. (2007). Earth, landscape, biotope, plant. Interactive visualisation with Biosphere3D. In M. Schrenk, V. V. Popovich & J. Benedikt (Eds.), Real Corp 007 - to plan is not enough: Strategies, plans, concepts, projects and their successful implementation in urban, regional and real estate development. Vienna: CORP.

    Google Scholar 

  • Perrin, L., Beauvais, N., & Puppo, M. (2001). Procedural landscape modeling with geographic information: The IMAGIS approach. Landscape and Urban Planning, 54, 33-47.

    Article  Google Scholar 

  • Pettit, C., Cartwright, W., Bishop, I., Lowell, K., Pullar, D., & Duncan, D. (eds). (2008). Landscape analysis and visualisation: Spatial models for natural resource management and planning (Book Series: Lecture notes in geoinformation and cartography). Berlin: Springer.

    Google Scholar 

  • Pradal, C., Donès, N., Godin, C., Barbier de Reuille, P., Boudon, F., Adam, B., & Sinoquet, H. (2004). ALEA: A software for integrating analysis and simulation tools for 3D architecture and ecophysiology. In C. Godin et al. (Eds.), Proceedings of the 4th International Workshop on Functional-Structural Plant Models, Montpellier, France, 7-11 June 2004 (p. 406). Montpellier: UMR AMAP.

    Google Scholar 

  • Rivas, V., Rix, K., Frances, E., Cendrero, A., & Brunsden, D. (1997). Geomorphological indicators for environmental impact assessment;consumable and non consumable geomorphological resources. Geomorphology, 18(3-4), 169-182.

    Article  Google Scholar 

  • Salter, J.D., Campbell, C., Journeay, M., & Sheppard, S.R.J. (2009). The digital workshop: Exploring the use of interactive and immersive visualisation tools in participatory planning. Journal of Environmental Management, 90, 2090-2101.

    Google Scholar 

  • Sauget, N., & Depuy, M. (1996). Forêt paysanne et paysage: les agriculteurs et le visible. In G. Balent (Ed.), La forêt paysanne dans l’espace rural. Biodiversité, paysages, produits. Étud. Rech. Syst. Agraires Dév., 29 (pp. 245-264).

    Google Scholar 

  • Savill, P., Evans, J., Auclair, D., & Falck, J. (1997). Plantation silviculture in Europe. Oxford: Oxford University Press. 297 p.

    Google Scholar 

  • Sheppard, S.R.J. (1982). Landscape portrayals: Their use, accuracy, and validity in simulating proposed landscape change. Dissertation, University of California, Berkeley, CA.

    Google Scholar 

  • Sheppard, S. R. J. (2005). Landscape visualisation and climate change: The potential for influencing perceptions and behaviour. Environmental Science and Policy, 8, 637-654.

    Article  Google Scholar 

  • Sheppard, S. R. J. (2006). Bridging the sustainability gap with landscape visualisation in community visioning hubs. The Integrated Assessment Journal, 6(4), 79-108.

    Google Scholar 

  • Sheppard, S.R.J., & Cizek, P. (2009). The ethics of Google Earth: Crossing thresholds from spatial data to landscape visualisation. Journal of Environmental Management, 90, 2102-2117.

    Google Scholar 

  • Sirami, C., Brotons, L., & Martin, J. L. (2007). Vegetation and songbird response to land abandonment: From landscape to census plot. Diversity and Distributions, 13, 42-52.

    Google Scholar 

  • Sirami, C., Brotons, L., & Martin, J. L. (2008). Spatial extent of bird species response to landscape changes: Colonisation/extinction dynamics at the community-level in two contrasting habitats. Ecography, 31, 509-518.

    Article  Google Scholar 

  • Snyder, K. (2003). Tools for community design and decision making. In S. Geertman & J. Stilwell (Eds.), Planning support systems in practice (pp. 99-120). Berlin: Springer.

    Google Scholar 

  • Soliva, R., & Hunziker, M. (2009). Beyond the visual dimension: Using ideal type narratives to analyse people’s assessments of landscape scenarios. Land Use Policy, 26, 284-294.

    Google Scholar 

  • Thomas, A. L., & Price, C. (1999). Landscape valuation of farm woodlands. In P. J. Burgess, E. D. R. Brierley, J. Morris & J. Evans (Eds.), Farm woodlands for the future (pp. 69-79). Oxford: BIOS Scientific Publishers.

    Google Scholar 

  • Tress, B., & Tress, G. (2003). Scenario visualisation for participatory landscape planning—a study from Denmark. Landscape and Urban Planning, 64, 161-178.

    Article  Google Scholar 

  • Tyrväinen, L., & Tahvanainen, L. (2000). Landscape visualisation in rural land-use planning. In B. Krishnapillay, et al. (Ed.), Forests and society: The role of research, XXI IUFRO World Congress (Vol. 1, pp. 338-347), Kuala Lumpur, Malaysia.

    Google Scholar 

  • Van Ittersum, M. K., Ewert, F., Heckelei, T., Wery, J., Alkan Olsson, J., Andersen, E., et al. (2008). Integrated assessment of agricultural systems - A component-based framework for the European Union (SEAMLESS). Agricultural Systems, 96, 150-165.

    Article  Google Scholar 

  • Wissen, U., Schroth, O., Lange, E., & Schmid, W. A. (2008). Approaches to integrating indicators into 3D landscape visualisations and their benefits for participative planning situations. Journal of Environmental Management, 89, 184-196.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sébastien Griffon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Griffon, S., Auclair, D., Nespoulous, A. (2010). Visualising Changes in Agricultural Landscapes. In: Brouwer, F., Ittersum, M. (eds) Environmental and Agricultural Modelling. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3619-3_6

Download citation

Publish with us

Policies and ethics