Visualising Changes in Agricultural Landscapes

  • Sébastien GriffonEmail author
  • Daniel Auclair
  • Amélie Nespoulous


Although land managers and policy-makers generally have a good experience of what result can be expected from their decisions, they are often faced with difficulty when trying to communicate the visual impact of a future management option to all stakeholders (local and regional decision-makers, land managers, landscape planners, and various communities involved in outdoor activities). Three-dimensional visualisation of the landscape is often used for communicating with the stakeholders. Static, web-based landscape visualisation tools have made considerable progress in recent years, such as for example Google Earth, covering the entire planet in 3D. Such visualisations are based on aerial (satellite) imagery, at a specific date, but are not dynamic. The challenge in methods for integrated assessment of agricultural systems (such as developed in SEAMLESS) is to view future changes in land use, according to scenarios.

A 3-D landscape visualisation component has been developed. It is to be launched at the end of a scenario simulation to allow for exploration of landscape changes. Pressures causing such changes will come from a bio-economic farm model; they are then translated into changes in the spatial configuration of the landscape. For each simulation, representing one new agricultural policy, SLE (Seamless Landscape Explorer) processes the input data to build a “virtual scene”, which is saved in a project file. Such files can be used to visualise a scene previously calculated by the land-modeller, for example from a different viewpoint or to produce a film by navigating within the scene. Satellite or aerial imagery or generated textures are draped over the Terrain. The different types of land-use are visualised thanks to a library of detailed textures, and vegetation can be added and visualised according to specific vegetation models. The building process then assembles the 3D landscape model, and displays it in the viewer.

Such qualitative outputs can be used in a post-modelling analysis, and/or in the negotiation phases. Such visualisation could have a significant implication for the choice of effective land-use policy, and could be used as a basis for discussion and negotiation within the community. An example of four different scenarios in the French Languedoc-Roussillon region is presented here.


  1. Alkan Olsson, J., Bockstaller, C., Stapleton, L.M., Ewert, F., Knapen, R., Therond, O., Geniaux, G., Bellon, S., Pinto Correira, T., Turpin, N., & Bezlepkina, I. (2009). A goal oriented indicator framework to support impact assessment of new policies for agri- environmental systems. Environmental Science and Policy, 12(5), 562-572.Google Scholar
  2. Appleton, K., & Lovett, A. (2003). GIS-based visualisation of rural landscapes: Defining ‘sufficient’ realism for environmental decision-making. Landscape and Urban Planning, 65, 117-131.CrossRefGoogle Scholar
  3. Appleton, K., & Lovett, A. (2005). GIS-based visualisation of development proposals: Reactions from planning and related professionals. Computers, Environment and Urban Systems, 29(3), 321-339.CrossRefGoogle Scholar
  4. Appleton, K., Lovett, A., Sünnenberg, G., & Dockerty, T. (2002). Rural landscape visualisation from FIS databases: A comparison of approaches, options and problems. Computers, Environment and Urban Systems, 26, 141-162.CrossRefGoogle Scholar
  5. Auclair, D., Barczi, J. F., Borne, F., & Etienne, M. (2001). Landscape visualisation software as a forest management decision support system. In A. Franc, O. Laroussinie & T. Karjalainen (Eds.), Criteria and indicators for sustainable forest management at the forest management unit level (pp. 207-214). Joensuu: European Forest Institute.Google Scholar
  6. Auclair, D., Barczi, J.-F., Borne, F., & Étienne, M. (2001). Assessing the visual impact of agroforestry management with landscape design software. Landscape Research, 26, 397-406.CrossRefGoogle Scholar
  7. Bell, S. (2001). Landscape pattern, perception and visualisation in the visual management of forests. Landscape and Urban Planning, 54, 204-211.CrossRefGoogle Scholar
  8. Bergen, S. D., Fridley, J. L., Ganter, M. A., & Schiess, P. (1995). Predicting the visual effect of forest operations. Journal of Forestry, 93, 33-37.Google Scholar
  9. Bishop, I. D., Hull, R. B., & Stock, C. (2005). Supporting personal world-views in an envisioning system. Environmental Modelling and Software, 20, 1459-1468.CrossRefGoogle Scholar
  10. Bishop, I. D., Stock, C., & Williams, K. J. (2008). Using virtual environments and agent models in multi-criteria decision-making. Land Use Policy, 26, 87-94.CrossRefGoogle Scholar
  11. Bishop, I. D., Wherrett, J. R., & Miller, D. R. (2001). Assessment of path choices on a country walk using a virtual environment. Landscape and Urban Planning, 52, 225-237.CrossRefGoogle Scholar
  12. Bloom, C. (2000). Terrain texture composition by blending in the frame buffer (“Splatting Textures”), from
  13. Boudon, F., Nouguier, C., & Godin, C. (2001). GEOM module manual. II. Developper guide (p. 600). Document de travail du Programme Modélisation des plantes, DT4-2001. Montpellier, France: CIRAD.Google Scholar
  14. Cartwright, W. (2008). Visualising alternative futures. In C. Pettit, W. Cartwright, I. Bishop, K. Lowell, D. Pullar & D. Duncan (Eds.), Landscape analysis and visualisation: Spatial models for natural resource management and planning (pp. 490-507). Berlin: Springer.Google Scholar
  15. Cheylan, J.P., & Gumuchian, H. (2002). L’évaluation des impacts des politiques publiques paysagères au sein des Parcs Naturels Régionaux en montagnes méditerranéennes: quelles méthodes? Quels outils? Méthodes et outils pour l’évaluation des impacts des PPP, Numéro spécial: Politiques publiques paysagères et Parcs Naturels Régionaux; pour une évaluation (pp. 13-24).Google Scholar
  16. Danahy, J. W. (1989). Irises in a landscape: An experiment in dynamic interaction and teaching design studio. In M. McCullough, W. J. Mitchell & P. Purcell (Eds.), Proceedings of the CAAD Futures’89, The electronic design studio: Architectural knowledge and media in the computer era (pp. 363-376). Cambridge, MA: MIT Press.Google Scholar
  17. Daniel, T. C. (1992). Data visualization for decision support in environmental management. Landscape Urban Planning, 21, 261-263.CrossRefGoogle Scholar
  18. Daniel, T. C. (2001). Wither scenic beauty? Visual landscape quality assessment in the 21st century. Landscape Urban Planning, 54, 267-281.CrossRefGoogle Scholar
  19. Day, A. M., & Willmott J. (2005). Compound textures for dynamic impostor rendering. Computers & Graphics, 29(1), 109-124.Google Scholar
  20. De Boer, W.H. (2000). Fast terrain rendering using geometrical mipmapping, from
  21. Dockerty, T., Lovett, A., Sünnenberg, G., Appleton, K., & Parry, M. (2005). Visualising the potential impacts of climate change on rural landscapes. Computers, Environment and Urban Systems, 29, 297-320.CrossRefGoogle Scholar
  22. Ervin, S. M., & Hasbrouck, H. H. (2001). Landscape modelling: Digital techniques for landscape visualization. New York: McGraw-Hill.Google Scholar
  23. Gardner, R. H., & Urban, D. L. (2006). Neutral models for testing landscape hypotheses. Landscape Ecology, 22, 15-29.CrossRefGoogle Scholar
  24. Ghadirian, P., & Bishop, I. D. (2008). Integration of augmented reality and GIS: A new approach to realistic landscape visualisation. Landscape and Urban Planning, 86, 226-232.CrossRefGoogle Scholar
  25. Gobster, P. H., Nassauer, J. I., Daniel, T. C., & Fry, G. (2007). The shared landscape: What does aesthetics have to do with ecology? Landscape Ecology, 22, 959-972.CrossRefGoogle Scholar
  26. Google Inc. (2006). Sketchup user’s guide (p. 362), from
  27. Helming, K., Tscherning, K., König, B., Sieber, S., Wiggering, H., Kuhlman, T., et al. (2008). Ex ante impact assessment of land use changes in European regions—the SENSOR approach. In K. Helming, M. Perez-Soba & P. Tabbush (Eds.), Sustainability impact assessment of land use changes. Berlin: Springer.CrossRefGoogle Scholar
  28. Herwig, A., & Paar, P. (2002). Game engines: Tools for landscape visualization and planning? In E. Buhmann, U. Nothelfer & M. Pietsch (Eds.), Proceedings at Anhalt University of Applied Sciences, trends in GIS and virtualization in environmental planning and design (pp. 162-171). Heidelberg: Wichmann.Google Scholar
  29. Lange, E. (2001). The limits of realism: Perceptions of virtual landscapes. Landscape and Urban Planning, 54, 163-182.CrossRefGoogle Scholar
  30. Lange, E., & Bishop, I. (2001). Our visual landscape: Analysis, modeling, visualization and protection. Landscape and Urban Planning, 54, 1-3.CrossRefGoogle Scholar
  31. Lange, E., Hehl-Lange, S., & Brewer, M. J. (2008). Scenario-visualization for the assessment of perceived green space qualities at the urban-rural fringe. Journal of Environmental Management, 89, 245-256.PubMedCrossRefGoogle Scholar
  32. Le Ber, F., Benoît, M., Schott, C., Mari, J.-F., & Mignolet, C. (2006). Studying crop sequences with CarrotAge, a HMM-based data mining software. Ecological Modelling, 191, 170-185.CrossRefGoogle Scholar
  33. Le Ber, F., Lavigne, C., Mari, J.F., Adamczyk, K., & Angevin, F. (2006b). GENEXP, un logiciel pour simuler des paysages agricoles en vue de l’étude de la diffusion de transgènes. Paper presented at the SAGEO 2006 International Conference on Spatial Analysis and GEOmatics; Research & Development, Strasbourg, FR. Retrieved from
  34. Lovett, A. (2005). Futurescapes. Computers, Environment and Urban Systems, 29, 249-253.CrossRefGoogle Scholar
  35. Lovett, A., Kennaway, R., Sünnenberg, G., Cobb, D., Dolman, P., & O’Riordan, T. (2001). Visualising sustainable agricultural landscapes. In D. Unwin & P. Fisher (Eds.), Virtual reality in geography (pp. 102-130). London: Taylor & Francis.CrossRefGoogle Scholar
  36. MacFarlane, R., Stagg, H., Turner, K., & Lievesley, M. (2005). Peering through the smoke? Tensions in landscape visualisation. Computers, Environment and Urban Systems, 29, 341-359.CrossRefGoogle Scholar
  37. Mansergh, I., Lau, A., & Anderson, R. (2008). Geographic landscape visualisation in planning adaptation to climate change in Victoria, Australia. In C. Pettit, W. Cartwright, I. Bishop, K. Lowell, D. Pullar & D. Duncan (Eds.), Landscape analysis and visualisation: Spatial models for natural resource management and planning (pp. 469-487). Berlin: Springer.Google Scholar
  38. Muhar, A. (2001). Three-dimensional modelling and visualisation of vegetation for landscape simulation. Landscape and Urban Planning, 54, 5-17.CrossRefGoogle Scholar
  39. Nespoulous, A. (2004). Relations entre la dynamique de la végétation et la gestion sociale de l’espace: les garrigues du Pic Saint Loup. MA thesis, University of Montpellier III, p. 89.Google Scholar
  40. Orland, B., Budthimedhee, K., & Uusitalo, J. (2001). Considering virtual worlds as representations of landscape realities and as tools for landscape planning. Landscape and Urban Planning, 54, 139-148.CrossRefGoogle Scholar
  41. Paar, P., & Clasen, M. (2007). Earth, landscape, biotope, plant. Interactive visualisation with Biosphere3D. In M. Schrenk, V. V. Popovich & J. Benedikt (Eds.), Real Corp 007 - to plan is not enough: Strategies, plans, concepts, projects and their successful implementation in urban, regional and real estate development. Vienna: CORP.Google Scholar
  42. Perrin, L., Beauvais, N., & Puppo, M. (2001). Procedural landscape modeling with geographic information: The IMAGIS approach. Landscape and Urban Planning, 54, 33-47.CrossRefGoogle Scholar
  43. Pettit, C., Cartwright, W., Bishop, I., Lowell, K., Pullar, D., & Duncan, D. (eds). (2008). Landscape analysis and visualisation: Spatial models for natural resource management and planning (Book Series: Lecture notes in geoinformation and cartography). Berlin: Springer.Google Scholar
  44. Pradal, C., Donès, N., Godin, C., Barbier de Reuille, P., Boudon, F., Adam, B., & Sinoquet, H. (2004). ALEA: A software for integrating analysis and simulation tools for 3D architecture and ecophysiology. In C. Godin et al. (Eds.), Proceedings of the 4th International Workshop on Functional-Structural Plant Models, Montpellier, France, 7-11 June 2004 (p. 406). Montpellier: UMR AMAP.Google Scholar
  45. Rivas, V., Rix, K., Frances, E., Cendrero, A., & Brunsden, D. (1997). Geomorphological indicators for environmental impact assessment;consumable and non consumable geomorphological resources. Geomorphology, 18(3-4), 169-182.CrossRefGoogle Scholar
  46. Salter, J.D., Campbell, C., Journeay, M., & Sheppard, S.R.J. (2009). The digital workshop: Exploring the use of interactive and immersive visualisation tools in participatory planning. Journal of Environmental Management, 90, 2090-2101. Google Scholar
  47. Sauget, N., & Depuy, M. (1996). Forêt paysanne et paysage: les agriculteurs et le visible. In G. Balent (Ed.), La forêt paysanne dans l’espace rural. Biodiversité, paysages, produits. Étud. Rech. Syst. Agraires Dév., 29 (pp. 245-264).Google Scholar
  48. Savill, P., Evans, J., Auclair, D., & Falck, J. (1997). Plantation silviculture in Europe. Oxford: Oxford University Press. 297 p.Google Scholar
  49. Sheppard, S.R.J. (1982). Landscape portrayals: Their use, accuracy, and validity in simulating proposed landscape change. Dissertation, University of California, Berkeley, CA.Google Scholar
  50. Sheppard, S. R. J. (2005). Landscape visualisation and climate change: The potential for influencing perceptions and behaviour. Environmental Science and Policy, 8, 637-654.CrossRefGoogle Scholar
  51. Sheppard, S. R. J. (2006). Bridging the sustainability gap with landscape visualisation in community visioning hubs. The Integrated Assessment Journal, 6(4), 79-108.Google Scholar
  52. Sheppard, S.R.J., & Cizek, P. (2009). The ethics of Google Earth: Crossing thresholds from spatial data to landscape visualisation. Journal of Environmental Management, 90, 2102-2117.Google Scholar
  53. Sirami, C., Brotons, L., & Martin, J. L. (2007). Vegetation and songbird response to land abandonment: From landscape to census plot. Diversity and Distributions, 13, 42-52.Google Scholar
  54. Sirami, C., Brotons, L., & Martin, J. L. (2008). Spatial extent of bird species response to landscape changes: Colonisation/extinction dynamics at the community-level in two contrasting habitats. Ecography, 31, 509-518.CrossRefGoogle Scholar
  55. Snyder, K. (2003). Tools for community design and decision making. In S. Geertman & J. Stilwell (Eds.), Planning support systems in practice (pp. 99-120). Berlin: Springer.Google Scholar
  56. Soliva, R., & Hunziker, M. (2009). Beyond the visual dimension: Using ideal type narratives to analyse people’s assessments of landscape scenarios. Land Use Policy, 26, 284-294.Google Scholar
  57. Thomas, A. L., & Price, C. (1999). Landscape valuation of farm woodlands. In P. J. Burgess, E. D. R. Brierley, J. Morris & J. Evans (Eds.), Farm woodlands for the future (pp. 69-79). Oxford: BIOS Scientific Publishers.Google Scholar
  58. Tress, B., & Tress, G. (2003). Scenario visualisation for participatory landscape planning—a study from Denmark. Landscape and Urban Planning, 64, 161-178.CrossRefGoogle Scholar
  59. Tyrväinen, L., & Tahvanainen, L. (2000). Landscape visualisation in rural land-use planning. In B. Krishnapillay, et al. (Ed.), Forests and society: The role of research, XXI IUFRO World Congress (Vol. 1, pp. 338-347), Kuala Lumpur, Malaysia.Google Scholar
  60. Van Ittersum, M. K., Ewert, F., Heckelei, T., Wery, J., Alkan Olsson, J., Andersen, E., et al. (2008). Integrated assessment of agricultural systems - A component-based framework for the European Union (SEAMLESS). Agricultural Systems, 96, 150-165.CrossRefGoogle Scholar
  61. Wissen, U., Schroth, O., Lange, E., & Schmid, W. A. (2008). Approaches to integrating indicators into 3D landscape visualisations and their benefits for participative planning situations. Journal of Environmental Management, 89, 184-196.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Sébastien Griffon
    • 1
    Email author
  • Daniel Auclair
    • 2
  • Amélie Nespoulous
    • 3
  1. 1.CIRAD, UMR AMAPMontpellierFrance
  2. 2.INRA, UMR AMAPMontpellierFrance
  3. 3.CNRS, UMR CEFEMontpellierFrance

Personalised recommendations