Skip to main content

A Component-Based Framework for Simulating Agricultural Production and Externalities

  • Chapter
  • First Online:

Abstract

Although existing simulation tools can be used to study the impact of agricultural management on production activities in specific environments, they suffer from several limitations. They are largely specialized for specific production activities: arable crops/cropping systems, grassland, orchards, agro-forestry, livestock etc. Also, they often have a restricted ability to simulate system externalities which may have a negative environmental impact. Furthermore, the structure of such systems neither allows an easy plug-in of modules for other agricultural production activities, nor the use of alternative components for simulating processes. Finally, such systems are proprietary systems of either research groups or projects which inhibits further development by third parties.

SEAMLESS aims to provide a tool to integrate analyses of impacts on the key aspects of sustainability and multi-functionality, particularly in Europe. This requires evaluating agricultural production and system externalities for the most important agricultural production systems. It also requires a simulation framework which can be extended and updated by research teams, which allows a manageable transfer of research results to operational tools, and which is transparent with respect to its contents and its functionality.

The Agricultural Production and Externalities Simulator (APES) is a modular simulation system aimed at meeting these requirements, and targeted at estimating the biophysical behavior of agricultural production systems in response to the interaction of weather and agro-technical management. APES is a framework which uses components that offer simulation options for different processes of relevance to agricultural production systems. Models are described in the associated help files of components, and a shared ontology is built on the web. Components like these, which are designed to be inherently re-usable, that is not targeted specifically to a given modelling framework, also represent a way to share modelling knowledge with other projects and the scientific community in general.

This chapter describes the current state of APES development and presents modelling options in the system, and its software architecture.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Acutis, M., Confalonieri, R., Donatelli, M., & Rana, G. (2008). Modellazione dell’allettamento dei cereali a paglia. Proceedings of IX National Congress of Agrometeorology, pp. 84-85.

    Google Scholar 

  • Acutis, M., Trevisiol, P., Gentile, A., Ditto, D., & Bechini, L. (2007). Software components to simulate surface runoff, water, carbon, and nitrogen dynamics in the soil. Proceedings of Farming Systems Design 2007, Catania, Italy, 10-12 September, 2007.

    Google Scholar 

  • Alberts, E.E., Nearing, M.A., Weltz, M.A., Risse, L.M., Pierson, F.B., Zhang, X.C., Laflen, J.M., & Simanton, J.R. (1995). WEPP Model user guide. Chapter 7. Soil component.

    Google Scholar 

  • Analytis, S. (1977). Über die Relation zwischen biologischer Entwicklung und Temperatur bei phytopathogenen Pilzen. Phytopathologische Zeitschrift, 90, 64-76.

    Article  Google Scholar 

  • Argent, R. M. (2004). An overview of model integration for environmental applications - components, frameworks and semantics. Environmental Modelling and Software, 19, 219-234.

    Article  Google Scholar 

  • Argent, R.M., & Rizzoli, A.E. (2004). Development of multi-framework model components. In C. Pahl-Wostl, S. Schmidt, A.E. Rizzoli, & A.J. Jakeman (Eds.), Transactions of the 2nd Biennial Meeting of the International Environmental Modelling & Software Society (Vol. 1, pp. 365-370). Osnabrück, Germany: InternationalEnvironmental Modelling and Software Society (iEMSs).

    Google Scholar 

  • Athanasiadis, I.N., Rizzoli, A.E., Donatelli, M., & Carlini, L. (2006). Enriching software model interfaces using ontology-based tools. iEMSs Congress, Vermont, July 2006, http://www.iemss.org/iemss2006/papers/s5/284_Athanasiadis_1.pdf .

  • Aylor, D. (1982). Modeling spore dispersal in a barley crop. Agricultural Meteorology, 26(3), 215-219.

    Article  Google Scholar 

  • Baier, T. (2007). The rcom package. Available online at http://cran.r-project.org/doc/packages/rcom.pdf version 1.5-2.2. Retrieved September 17, 2007.

  • Baker, C. J., Berry, P. M., Spink, J. H., Sylvester-Bradley, R., Griffin, J. M., Scott, R. K., et al. (1998). A method for the assessment of the risk of wheat lodging. Journal of Theoretical Biology, 194, 587-603.

    Article  PubMed  Google Scholar 

  • Balderacchi, M., Boccelli, R., & Trevisan, M. (2007). Tools to assess pesticide environmental fate - Agrochemicals/APES, EPRIP 2 and FitoMarche software. Pavia, Italy: La Goliardica Pavese, pp. 142, ISBN 978-88-7830-477-2.

    Google Scholar 

  • Barrett, P. D., Laidlaw, A. S., & Mayne, C. S. (2005). GrazeGro, a European herbage growth model to predict pasture production in perennial ryegrass swards for decision support. European Journal of Agronomy, 23, 37-56.

    Article  Google Scholar 

  • Bastiaans, L. (1991). Ratio between virtual and visual lesion size as a measure to describe reduction in leaf photosynthesis of rice due to leaf blast. Phytopathology, 81(6), 611-615.

    Article  Google Scholar 

  • Bishop, J. (2008). C# 3.0 design patterns (p. 314). Sebastopol, CA: O’Reilly.

    Google Scholar 

  • Blaise, P. H., & Gessler, C. (1992). An extended progeny/parent ratio model. I. Theoretical development. Journal of Phytopathology, 134, 39-52.

    Article  Google Scholar 

  • Braudeau, E. (2006). Le modèle Kamel. DDN.FR.001.390019.000.S.P.2006.000.31500. Paris: Agence pour la Protection des Programmes.

    Google Scholar 

  • Braudeau, E., & Mohtar, R. H. (2006). Modeling the swelling curve for packed soil aggregates using the pedostructure concept. Journal of the Soil Science Society of America, 70, 494-502.

    Article  CAS  Google Scholar 

  • Braudeau, E., & Mohtar, R.H. (2009). Modeling the soil system: Bridging the gap between pedology and soil-water physics. Global and Planetary Change 67, 51-61.

    Google Scholar 

  • Brisson, N., Gary, C., Justes, E., Roche, R., Mary, B., Ripoche, D., et al. (2003). An overview of the crop model STICS. European Journal of Agronomy, 18(3-4), 309-332.

    Article  Google Scholar 

  • Brisson, N., Mary, B., Ripoche, D., Jeuffroy, M. H., Ruget, F., Nicoullaud, B., et al. (1988). STICS: A generic model for the simulation of crops and their water and nitrogen balances. I. Theory and parameterization applied to wheat and corn. Agronomie, 18, 311-346.

    Article  Google Scholar 

  • Calvière, I., & Duru, M. (1999). The effect of N and P fertilizer application and botanical composition on the leaf/stem ratio patterns in spring in Pyrenean meadows. Grass and Forage Science, 54, 255-266.

    Article  Google Scholar 

  • Campbell, G. S. (1985). Soil physics with BASIC (p. 150). Amsterdam: Elsevier.

    Google Scholar 

  • Carlini, L., Bellocchi, G., & Donatelli, M. (2006). Rain, a software component to generate synthetic precipitation data. Agronomy Journal, 98, 1312-1317.

    Article  Google Scholar 

  • Carsel, R.F., Imhoff, J.C., Kummel, P.R., Cheplick, J.M., & Donigan, A.S.J. (1988). PRZM-3 A model for predicting pesticide and nitrogen fate in the crop root and unsatured soil zones: User manual for release 3.0. Athens, GA: National Exposure Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency.

    Google Scholar 

  • Castelan-Estrada, M. (2001). Growth and dry matter allocation in grapevine (Vitis vinifera): Radiation use efficiency and energetic costs. Ph.D. thesis, INA Paris-Grignon, France, 121 p.

    Google Scholar 

  • Confalonieri, R., Acutis, M., Bellocchi, G., Cerrani, L., Tarantola, S., Donatelli, M., et al. (2006). Exploratory sensitivity analysis of CropSyst, WARM and WOFOST: A case-study with rice biomass simulations. Italian Journal of Agrometeorology, 3, 17-25.

    Google Scholar 

  • Confalonieri, R., Bellocchib, G., & Donatelli, M. (2010). A software component to compute agro-meteorological indicators. Environmental Modelling and Software. (in press) Available from http://dx.doi.org/10.1016/j .envsoft.2008.11.007

  • Cooley, K.R. (1980). Erosivity “R” for individual design storms. In W.G. Knisel (Ed.), CREAMS: A field-scale model for chemicals, runoff, and erosion from agricultural management systems (pp. 386-397) (USDA-SEA Conservation Research Rep. No. 26). Washington, DC: USDA.

    Google Scholar 

  • Corbeels, M., McMurtrie, R. E., Pepper, P. A., & O’Connell, A. M. (2005). A process-based model of nitrogen cycling in forest plantations. Part I. Structure, calibration and analysis of the decomposition model. Ecological Modelling, 187(4), 426-448.

    Article  CAS  Google Scholar 

  • Cwalina, K., & Abrams, B. (2006). Aggregate components. In Framework design guidelines: Conventions, idioms, and patterns for reusable.NET libraries (pp. 235-271). Westford, MA: Addison-Wesley.

    Google Scholar 

  • David, O., Markstrom, S. L., Rojas, K. W., Ahuja, L. R., & Schneider, W. (2002). The object modelling system. In L. R. Ahuja, L. Ma & T. A. Howell (Eds.), Agricultural system models in field research and technology transfer (pp. 317-344). Boca Raton, FL: Lewis.

    Google Scholar 

  • Del Furia, L., Rizzoli, A., & Arditi, R. (1995). Lakemaker: A general object-oriented software tool for modelling the eutrophication process in lakes. Environmental Software, 10(1), 43-64.

    Article  Google Scholar 

  • Di Guardo, A., Donatelli, M., & Botta, M. (2007). Two framework components to simulate biophysical systems. In Proceedings of Farming Systems Design 2007, Catania, Italy, 10-12 September 2007.

    Google Scholar 

  • Donatelli M., Acutis M., Bregaglio S., Rosenmund A., & Casellas E. (2009). A framework and a software component to simulate agricultural management. Environmental Modelling and Software (submitted).

    Google Scholar 

  • Donatelli, M., Bellocchi, G., & Carlini, L. (2006a). A software component for estimating solar radiation. Environmental Modelling and Software, 21(3), 411-416.

    Article  Google Scholar 

  • Donatelli, M., Bellocchi, G., & Carlini, L. (2006b). Sharing knowledge via software components: Models on reference evapotranspiration. European Journal of Agronomy, 24(2), 186-192.

    Article  Google Scholar 

  • Donatelli, M., Bolte, J., van Evert, F., & Wang, W. (2003). Which software designs for evolution. In M.K. van Ittersum & M. Donatelli (Eds.), Modelling cropping systems: Science, software and applications. European Journal of Agronomy, 18, 193-195.

    Google Scholar 

  • Donatelli M., Bellocchi G., Habyarimana E., Confalonieri R., & Micale F. (2009). An extensible model library for generating wind speed data. Computers and Electronics in Agriculture, 69 (2009) 165-170.

    Google Scholar 

  • Donatelli, M., Bellocchi G., Habyarimana E., Bregaglio S., Confalonieri R. & Baruth B., (2009b). CLIMA: a weather generator framewor. In Anderssen, R.S., R.D. Braddock and L.T.H. Newham (eds) 18th World IMACS Congress and MODSIM09 International Congress on Modelling and Simulation. Modelling and Simulation Society of Australia and New Zealand and International Association for Mathematics and Computers in Simulation, July 2009, pp. 2377-2383. ISBN: 978-0-9758400-7-8. http://www.mssanz.org.au/modsim09/C3/donatelli_C3a.pdf

  • Donatelli, M., Confalonieri R., Cerrani I., Fanchini D., Acutis M., Tarantola S. & Baruth B., (2009c). LUISA (Library User Interface for Sensitivity Analysis): a generic software component for sensitivity analysis of bio-physical models. In Anderssen, R.S., R.D. Braddock and L.T.H. Newham (eds) 18th World IMACS Congress and MODSIM09 International Congress on Modelling and Simulation. Modelling and Simulation Society of Australia and New Zealand and International Association for Mathematics and Computers in Simulation, July 2009, pp. 2377-2383. ISBN: 978-0-9758400-7-8. http://www.mssanz.org.au/modsim09/C3/donatelli_C3b.pdf

  • Donatelli, M., Omicini, A., Fila, G., & Monti, C. (2004). Targeting reusability and replaceability of simulation models for agricultural systems. In S.E. Jacobsen, C.R. Jensen, & J.R. Porter (Eds.), Proceedings of the 8th European Society for Agronomy Congress (pp. 237-238), 11-15 July, Copenhagen, Denmark.

    Google Scholar 

  • Donatelli, M., & Rizzoli, A. (2008). A design for framework-independent model components of biophysical systems International Congress on Environmental Modelling and Software iEMSs 2008. Proceedings of the iEMSs Fourth Biennial Meeting, Barcelona, Catalonia, 7-10 July 2008, pp. 727-734.

    Google Scholar 

  • Duru, M. (2008). Improvement of time-driven models of lamina cocksfoot digestibility by a process-based model to take account of plant N nutrition and defoliation. Journal of Agronomy and Crop Science, 194(5), 401-412.

    Article  Google Scholar 

  • Duru, M., Adam, M., Cruz, P., Martin, G., Ansquer, P., Ducourtieux, C., Jouany, C., Theau, J.P., & Viegas, J. (2009a). Modelling above-ground herbage mass for a wide range of grassland community types. Ecological Modelling, 220, 209-225.

    Google Scholar 

  • Duru, M., Al Haj Khaled, R., Ducourtieux, C., Theau, J.P., Quadros, F., & Cruz, C. (2009). Do plant functional types based on leaf dry matter content allow characterizing native grass species and grasslands for herbage growth pattern? Plant Ecology, 201, 421-433.

    Google Scholar 

  • Duru, M., Cruz, P., Haj Khaled, R., Ducourtieux, C., & Theau, J. P. (2008). Relevance of plant functional types based on leaf dry matter content for assessing digestibility of native grass species and species-rich grassland communities in spring. Agronomy Journal, 100, 1622-1630.

    Article  Google Scholar 

  • Ferrer-Alegre, F., & Stockle, C. O. (1999). A model for assessing crop response to salinity. Irrigation Science, 19, 15-23.

    Article  Google Scholar 

  • Georgiadis, T., Rossi, S., & Nerozzi, F. (1995). Inferring ozone deposition on agricultural surfaces: An application to herbaceous and tree canopies. Water, Air, and Soil Pollution, 84, 117-128.

    Article  CAS  Google Scholar 

  • Green, W.H., & Ampt, G.A. (1914). Studies on soil physics. Journal of Agricultural Science, 4(1), 1-24. Hydrology. Transactions American Society Agricultural Engineering, 20, 1100-1104.

    Google Scholar 

  • Hearn, A.B. (1994). The principles of cotton water relations and their application in management. In G.A. Constable & N.W. Forrester (Eds.), Proceedings World Cotton Research Conference, 1st, Brisbane, Australia (pp. 66-92), 14-17 February 1994. Melbourne, Australia: CSIRO.

    Google Scholar 

  • Hillyer, C., Bolte, J., van Evert, F., & Lamaker, A. (2003). The MODCOM modular simulation system. European Journal of Agronomy, 18(3-4), 333-343.

    Article  Google Scholar 

  • Jantunen, A. P. K., Trevisan, M., & Capri, E. (2005). Computer models for characterizing the fate of chemicals in soil: Pesticide leaching models and their practical applications. In J. Alvarez-Bendì & R. Muñoz-Carpena (Eds.), Soil-Water-Solute process characterisation: An integrate approach (pp. 715-756). Boca Raton, FL: CRC Press.

    Google Scholar 

  • Johnsson, H., Bergström, L., Jansson, P. E., & Paustian, K. (1987). Simulated nitrogen dynamics and losses in a layered agricultural soil. Agriculture, Ecosystems, and Environment, 18, 333-356.

    Article  Google Scholar 

  • Jones, J. W., Hoogenboom, G., Porter, C. H., Boote, K. J., Batchelor, W. D., Hunt, L. A., et al. (2003). The DSSAT cropping system model. European Journal of Agronomy, 18(3-4), 235-265.

    Article  Google Scholar 

  • Jones, J. W., Keating, B. A., & Porter, C. H. (2001). Approaches to modular model development. Agricultural Systems, 70, 421-443.

    Article  Google Scholar 

  • Karlberg, L., Ben-Gal, A., Jansson, P.-E., & Shani, U. (2006). Modelling transpiration and growth in salinity-stressed tomato under different climatic conditions. Ecological Modelling, 190, 15-40.

    Article  Google Scholar 

  • Keating, B. A., Carberry, P. S., Hammer, G. L., Probert, M. E., Robertson, M. J., Holzworth, D., et al. (2003). An overview of APSIM, a model designed for farming systems simulation. European Journal of Agronomy, 18(3-4), 267-288.

    Article  Google Scholar 

  • Lavorel, S., & Garnier, E. (2002). Predicting changes in community composition and ecosystem functioning from plant traits, revisiting the Holy Grail. Functional Ecology, 16, 545-556.

    Article  Google Scholar 

  • Magarey, R. D., Sutton, T. B., & Thayer, C. L. (2005). A simple generic infection model for foliar fungal plant pathogens. Phytopathology, 95(1), 92-100.

    Article  PubMed  CAS  Google Scholar 

  • Makowski, D., Hillier, J., Wallach, D., Andrieu, B., & Jeuffroy, M. H. (2006). Parameter estimation for crop models. In D. Wallach, D. Makowski & J. W. Jones (Eds.), Working with dynamic crop models (pp. 101-150). Amsterdam: Elsevier.

    Google Scholar 

  • Martin, P., Mohtar, R. H., Clouvel, P., & Braudeau, E. (2006, July). Modeling soil-water dynamics for diverse environmental needs. Vermont: iEMSs Congress.

    Google Scholar 

  • McCall, D. G., & Bishop-Hurley, G. J. (2003). A pasture growth model for use in a whole-farm dairy production model. Agricultural Systems, 76, 1183-1205.

    Article  Google Scholar 

  • Mesketer, S. J. (2004). Design patterns in C#. Boston: Addison-Wesley.

    Google Scholar 

  • Meyer, B. (1991). Design by contract. In D. Mandrioli & B. Meyer (Eds.), Advances in object-oriented software engineering. Englewnod Cliffs, NJ: Prentice Hall.

    Google Scholar 

  • Monteith, J. L. (1977). Climate and the efficiency of crop production in Britain. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 281, 277-294.

    Article  Google Scholar 

  • Monteith, J. L., & Unsworth, M. H. (1990). Principles of environmental physics. Woburn, MA: Butterworth-Heinemann.

    Google Scholar 

  • Morgan, R. P. C., Quinton, J. N., Smith, R. E., Govers, G., Poesen, J. W. A., Auerswald, K., et al. (1998). The European soil erosion model (EUROSEM): A dynamic approach for predicting sediment transport from fields and small catchments. Earth Surface Processes and Landforms, 23, 527-544.

    Article  Google Scholar 

  • Mulia, R. (2005). Modélisation tri-dimensionnelle de la croissance du système racinaire des plantes en milieu hétérogène avec l’approche de l’automate voxellaire. Ph.D. thesis, USTL, Montpellier 2, p. 86.

    Google Scholar 

  • Mulia, R., & Dupraz, C. (2006). Unusual fine root distributions of two deciduous tree species in southern France: What consequences for modelling of tree root dynamics? Plant and Soil, 281(1/2), 71-85.

    Article  CAS  Google Scholar 

  • Neitsch, S.L., Arnold, J.G., Kiniry, J.R., Williams, J.R., & King, K.W. (2002). Soil and water assessment tool. Theoretical Documentation. Temple, TX: Grassland, Soil and Water Research Laboratory, p. 506.

    Google Scholar 

  • Nendel, C., & Kersebaum, K. C. (2004). A simple model approach to simulate nitrogen dynamics in vineyard soils. Ecological Modelling, 177, 1-15.

    Article  CAS  Google Scholar 

  • Ollat, N., Diakou-Verdin, P., Garde, J. P., Barrieu, F., Gaudillière, J. P., & Moing, A. (2002). Grape berry development: A review. Journal International des Sciences de la Vigne et du Vin, 36(3), 109-131.

    CAS  Google Scholar 

  • Parton, W. J. (2004). Predicting soil temperatures in a shortgrass steppe. Soil Science, 138, 93-101.

    Article  Google Scholar 

  • Pronk, A., Goudriaan, J., Stilma, E., & Challa, H. (2003). A simple method to estimate radiation interception by nursery stock conifers: A case study of eastern white cedar. Netherlands Journal of Agricultural Science, 51, 279-295.

    Google Scholar 

  • R Development Core Team. (2007). R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing.

    Google Scholar 

  • Ritchie, J. T. (1972). Model for predicting evaporation from a row crop with incomplete cover. Water Resources Research, 85, 1204-1211.

    Article  Google Scholar 

  • Ritchie, J.T. (1991). Wheat phasic development. In J. Hanks & J.T. Ritchie (Eds.), Modelling plant and soil systems. Agronomy Monographs 31 (pp. 31-54). Madison, WI: ASA, CSSSA, SSSA.

    Google Scholar 

  • Ritchie, J.T., & Otter, S. (1985). Description and performance of CERES-Wheat: A user oriented wheat yield model. In ARS Wheat Yield Project. ARS-28 (pp. 159-175). Springfield, VA: National Technology Information Service.

    Google Scholar 

  • Rizzoli, A. E., Donatelli, M., Athanasiadis, I., Villa, F., Muetzelfeldt, R., & Huber, D. (2005). Semantic links in integrated modelling frameworks. Mathematics and Computers in Simulation, 78, 412-423.

    Article  Google Scholar 

  • Rizzoli, A.E., Donatelli, M., Muetzelfeldt, R., Otjens, T., Svennson, M.G.E., van Evert, F., Villa, F., & Bolte, J. (2004). SEAMFRAME, a proposal for an integrated modelling framework for agricultural systems. In S.E. Jacobsen, C.R. Jensen, & J.R. Porter (Eds.), Proceedings of the 8th European Society for Agronomy Congress (pp. 331-332), 11-15 July, Copenhagen, Denmark.

    Google Scholar 

  • Saltelli, A.,Tarantola, S., Campolongo, F. & Ratto, M. (2004). Sensitivity analysis in practice: a guide to assessing scientific models. Chichester, England: John Wiley & Sons Ltd.

    Google Scholar 

  • Saxton, K. E., & Rawls, W. J. (2006). Soil water characteristic estimates by texture and organic matter for hydrologic solutions. Journal of the Soil Science Society of America, 70, 1569-1578.

    Article  CAS  Google Scholar 

  • Schapendonk, A. H. C. M., Stol, W., Van Kraalingen, D. W. G., & Bouman, B. A. M. (1998). LINGRA, a sink/source model to simulate grassland productivity in Europe. European Journal of Agronomy, 9, 87-100.

    Article  Google Scholar 

  • M.E. Shibu, P.A. Leffelaar, H. van Keulen, P.K. Aggarwal (2009). LINTUL3, a simulation model for nitrogen-limited situations - application to rice European Journal of Agronomy (submitted).

    Google Scholar 

  • Shimono, H., Hasegawa, T., Moriyama, M., Fujimura, S., & Nagata, T. (2005). Modeling spikelet sterility induced by low temperature in rice. Agronomy Journal, 97, 1524-1536.

    Article  Google Scholar 

  • Sitch, S., Cox, P. M., Collins, W. J., & Huntigford, C. (2007). Indirect radiative forcing of climate change through ozone effects on the land-carbon sink. Nature, 448, 791-795.

    Article  PubMed  CAS  Google Scholar 

  • Smith, R. E., & Parlange, J. Y. (1978). A parameter-efficient hydrologic infiltration model. Water Resources Research, 14, 533-538.

    Article  Google Scholar 

  • Soil Conservation Service. (1972). Section 4: Hydrology. In National Engineering Handbook. SCS.

    Google Scholar 

  • Spiker, E. C., Hosker, R. P., Comer, V. J., White, J. R., Werre, R. W., Jr., Harmon, F. L., et al. (1992). Environmental chamber for study of the deposition flux of gaseous pollutants to material surfaces. Atmospheric Environment, 26, 2885-2892.

    Google Scholar 

  • Stockle, C. O., Donatelli, M., & Nelson, R. (2003). CropSyst, a cropping systems simulation model. European Journal of Agronomy, 18(3-4), 289-307.

    Article  Google Scholar 

  • Streck, N. A., Weiss, A., Xue, Q., & Baenziger, P. S. (2003). Improving predictions of developmental stages in winter wheat: A modified Wang and Engel model. Agricultural and Forest Meteorology, 115, 139-150.

    Article  Google Scholar 

  • Szypersky, C., Gruntz, D., & Murer, S. (2002). Component software - beyond object-oriented programming (2nd ed.). London: Addison-Wesley.

    Google Scholar 

  • Tiktak, A., Van den Berg, F., Boesten, J.J.T.I., Van Kraalingen, D., Leistra, M., & Van der Linden, A.M.A. (2001). Manual of FOCUS PEARL v 1.1.1. RIVM Report 711401008, Alterra Report 28 (p. 144). Bilthoven, The Netherlands: RIVM.

    Google Scholar 

  • Trevisan, M., Sorce, A., Balderacchi, M., & Di Guardo, A. (2007). A software component to simulate agro-chemicals fate. In Proceedings of Farming Systems Design 2007, Catania, Italy, 10-12 September 2007.

    Google Scholar 

  • Van Dam, J.C., Huygen, J., Wesseling, J.G., Feddes, R.A., Kabat, P., Van Walsum, P.E.V., Groenendijk, P., & Van Diepen, C.A. (1997). Theory of SWAP version 2.0. Report 71. Wageningen, The Netherlands: Department of Water Resources, WAU.

    Google Scholar 

  • Van Evert, F., & Lamaker, A. (2007). The MODCOM framework for component-based simulation. In proceedings of Farming Systems Design 2007, Catania, Italy, 10-12 September, 2007.

    Google Scholar 

  • Van Ittersum, M. K., Ewert, F., Heckelei, T., Wery, J., Alkan Olsson, J., Andersen, E., et al. (2008). Integrated assessment of agricultural systems - A component-based framework for the European Union (SEAMLESS). Agricultural Systems, 96(1-3), 150-165.

    Article  Google Scholar 

  • Van Ittersum, M. K., Leffelaar, P. A., Van Keulen, H., Kropff, M. J., Bastiaans, L., & Goudriaan, J. (2003). On approaches and applications of the Wageningen crop models. European Journal of Agronomy, 18(3-4), 187-393.

    Article  Google Scholar 

  • Van Keulen, H., & Seligman, N.G. (1987). Simulation of water use, nitrogen nutrition and growth of a spring wheat crop. Simulation Monographs. Wageningen, The Netherlands: Pudoc.

    Google Scholar 

  • Van Keulen, H., & Wolf, J. (1986). Modelling of agricultural production: Weather soils and crops. Simulation Monographs. Wageningen, The Netherlands: Pudoc.

    Google Scholar 

  • Villa F., Donatelli, M., Rizzoli, A., Krause, P., Kralisch, S., & Van Evert, F.K. (2006, July). Declarative modelling for architecture independence and data/model integration: A case study. iEMSs congress, Vermont.

    Google Scholar 

  • Vivin, Ph, Castelan, M., & Gaudillère, J. P. (2002). A source/sink model to simulate seasonal allocation of carbon in grapevine. Acta Horticulturae, 584, 43-56.

    CAS  Google Scholar 

  • Von Hoyningen-Huene, J. (1981). Die Interzeption des Niederschlags in landwirtschaftlichen Pjanzenbestanden. Arbeitsbericht Deutscher Verband fur Wasserwirtschaft und Kulturbau, DVWK, Braunschweig.

    Google Scholar 

  • Wadia, K. D. R., & Butler, D. R. (1994). Relationship between temperature and latent periods of rust and leaf-spot diseases of groundnut. Plant Pathology, 43, 121-129.

    Article  Google Scholar 

  • Waggoner, P. E. (1973). The removal of Helminthosporium maydis spores by wind. Phytopathology, 63(10), 1252-1255.

    Article  Google Scholar 

  • Waggoner, P. E., & Horsfall, J. G. (1969). EPIDEM. A simulator of plant disease written for a computer. Bulletin of the Connecticut Agricultural Experiment Station, 698, 80.

    Google Scholar 

  • Wermelinger, B., & Koblet, W. (1990). Seasonal growth and nitrogen distribution in grapevine leaves, shoots and grape. Vitis, 29, 15-26.

    Google Scholar 

  • Williams, J.R., & Berndt, H.D. (1977). Sediment Yield Prediction Based on Watershed Hydrology. Transactions of the American Society of Agricultural Engineers, 20, 1100-1104.

    Google Scholar 

  • Williams, J. R., Jones, C. A., Kiniry, J. R., & Spanel, D. A. (1989). The EPIC crop growth model. Transactions of the American Society of Agricultural Engineering, 32, 497-511.

    Google Scholar 

  • Woolhiser, D.A., Smith, R.E., & Goodrich, D.C. (1990). KINEROS, a kinematic runoff and erosion model: Documentation and user manual. United States Department of Agriculture, ARS-77.

    Google Scholar 

  • Wosten, J. H. M., Lilly, A., Nemes, A., & Le Bas, C. (1999). Development and use of a database of hydraulic properties of European soils. Geoderma, 90, 169-185.

    Article  Google Scholar 

  • Zadoks, J.C., & Schein, R.D. (1979). Epidemiology and plant disease management (p. 427). London: Oxford University Press.

    Google Scholar 

Download references

Acknowledgements

The development of APES was partially funded by the EU - DG Research, Sixth Framework Research Programme, Integrated Project SEAMLESS (http://www.seamless-ip.org ), contract no. 010036-2

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcello Donatelli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Donatelli, M. et al. (2010). A Component-Based Framework for Simulating Agricultural Production and Externalities. In: Brouwer, F., Ittersum, M. (eds) Environmental and Agricultural Modelling. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3619-3_4

Download citation

Publish with us

Policies and ethics