Advertisement

Prevention of Emergency Voltage Collapses in Electric Power Networks using Hybrid Predictive Control

  • S. LeirensEmail author
  • R. R. Negenborn
Chapter
Part of the Intelligent Systems, Control and Automation: Science and Engineering book series (ISCA, volume 42)

Abstract

The reliable operation of electricity transport and distribution networks plays a crucial role in modern societies. However, too often, when a fault occurs in electricity networks, such as a transmission line drop, loss of generation, or any other important failure, voltages start to decay, potentially leading to complete blackouts with dramatic consequences. Thus, techniques are required that improve the power grid operation in case of emergencies. In this chapter, to achieve this aim, an approach is presented that uses an adaptive predictive control scheme. Electric power transmission networks are hereby considered as large-scale interconnected dynamical systems. First, voltage instability issues are illustrated on a 9-bus benchmark system. Then, the details of the proposed approach are discussed: the power network modeling and the construction of a hybrid prediction model (i.e., including both continuous and discrete dynamics), and the formulation and the resolution of the adaptive predictive control problem. In simulation studies on the 9-bus benchmark system the performance of the proposed approach is illustrated in various emergency voltage control cases.

Keywords

Power System Transmission Line Model Predictive Control Capacitor Bank Power Network 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. Allen, N. LaWhite, Y. Yoon, J. Chapman, and M. Ilić. Interactive object-oriented simulation of interconnected power systems using Simulink. IEEE Transactions on Education, 44(1):87–95, February 2001.CrossRefGoogle Scholar
  2. 2.
    P. J. Antsaklis. A brief introduction to the rheory and applications of hybrid systems. IEEE Proceedings, Special Issue on Hybrid Systems: Theory and Applications, 88(7):879–886, July 2000.Google Scholar
  3. 3.
    P. Barton and C. Pantelides. Modeling of combined discrete/continuous processes. AIChE Journal, 40(6):966–979, June 1994.CrossRefGoogle Scholar
  4. 4.
    A. Bemporad and M. Morari. Control of systems integrating logic, dynamics, and constraints. Automatica, 35(3):407–427, March 1999.CrossRefGoogle Scholar
  5. 5.
    J. Bernussou and A. Titli. Interconnected Dynamical Systems: Stability, Decomposition and Decentralisation. North-Holland Publishing Company, Amsterdam, The Netherlands, 1982.Google Scholar
  6. 6.
    L. T. Biegler, A. M. Cervantes, and A. Wachter. Advances in simultaneous strategies for dynamic process optimization. Chemical Engineering Science, 57(4):575–593, February 2002.CrossRefGoogle Scholar
  7. 7.
    L. G. Bleris, P. D. Vouzis, J. G. Garcia, M. G. Arnold, and M. V. Kothare. Pathways for optimization-based drug delivery. Control Engineering Practice, 15(10):1280–1291, October 2007.CrossRefGoogle Scholar
  8. 8.
    K. E. Brenan, S. L. Campbell, L. R., and Petzold. Numerical Solution of Initial-Value Problems in Differential-Algebraic Equations. SIAM, Philadelphia, Pennsylvania, 1996.Google Scholar
  9. 9.
    A. M. Cervantes and L. T. Biegler. Large-scale DAE optimization using a simultaneous NLP formulation. AIChE Journal, 44(5):1038–1050, May 1998.CrossRefGoogle Scholar
  10. 10.
    I. K. Cho and H. Kim. Market power and network constraint in a deregulated electricity market. The Energy Journal, 28(2):1–34, April 2007.Google Scholar
  11. 11.
    M. Diehl, H. G. Bock, and J. P. Schlöder. A real-time iteration scheme for nonlinear optimization in optimal feedback control. SIAM Journal on Control and Optimization, 43(5):1714–1736, October 2005.CrossRefGoogle Scholar
  12. 12.
    M. Diehl, H. G. Bock, J. P. Schlöder, R. Findeisen, Z. Nagy, and F. Allgöwer. Real-time optimization and nonlinear model predictive control of processes governed by differential-algebraic equations. Journal of Process Control, 12(4):577–585, June 2002.CrossRefGoogle Scholar
  13. 13.
    Dynasim AB. Dymola – Dynamic Modeling Laboratory, User's Manual. Lund, Sweden, 2004.Google Scholar
  14. 14.
    Dynasim AB. Dymola-Simulink interface, 2004.Google Scholar
  15. 15.
    H. Elmqvist, S. E. Mattsson, and M. Otter. Modelica - a language for physical system modeling, visualization and interaction. In Proceedings of the 1999 IEEE Symposium on Computer-Aided Control System Design, pages 630–639, Kohala Coast, Hawaii, August 1999.Google Scholar
  16. 16.
    C. A. Falcone. Transmission in transition: bringing power to market. IEEE Power Engineering Review, 19(18):11–36, August 1999.CrossRefGoogle Scholar
  17. 17.
    C. W. Gear. Differential-algebraic equation index transformation. SIAM Journal on Scientific Computing, 9(1):39–47, January 1988.CrossRefGoogle Scholar
  18. 18.
    T. Geyer, M. Larsson, and M. Morari. Hybrid control of voltage collapse in power systems. In Proceedings of the European Control Conference 2003, volume 9, pages 157–166, Cambridge, UK, September 2003.Google Scholar
  19. 19.
    M. Ilić and J. Zaborsky. Dynamics and Control of Large Electric Power Systems. Wiley-Interscience, New York, New York, 2000.Google Scholar
  20. 20.
    N. Jenkins, R. Allan, P. Crossley, D. Kirschen, and G. Strbac. Embedded Generation. TJ International, Padstow, UK, 2000.Google Scholar
  21. 21.
    S. Kameswaran and L. T. Biegler. Simultaneous dynamic optimization strategies: Recent advances and challenges. Computers and Chemical Engineering, 30(10–12):1560–1575, September 2006.CrossRefGoogle Scholar
  22. 22.
    D. Karlsson, M. Hemmingsson, and S. Lindahl. Wide area system monitoring and control - Terminology, phenomena, and solution implementation strategies. IEEE Power and Energy Magazine, 2(5):68–76, September–October 2004.CrossRefGoogle Scholar
  23. 23.
    D. Karlsson and D.J. Hill. Modelling and identification of nonlinear dynamic loads in power systems. IEEE Transactions on Power Systems, 9(1):157–166, February 1994.CrossRefGoogle Scholar
  24. 24.
    J. H. Kim, J. B. Park, J. K. Park, and S. K. Joo. A market-based analysis on the generation expansion planning strategies. In Proceeding of the 13th International Conference on Intelligent Systems Application to Power Systems, page 6, Washington, District of Columbia, November 2005.Google Scholar
  25. 25.
    P. Kundur. Power System Stability and Control. McGraw-Hill, New York, New York, 1994.Google Scholar
  26. 26.
    M. Larsson, D. J. Hill, and G. Olsson. Emergency voltage control using search and predictive control. International Journal of Electric Power and Energy systems, 24(2):121–130, February 2002.CrossRefGoogle Scholar
  27. 27.
    R. Lazimy. Mixed-integer quadratic programming. Mathematical Programming, 22(1):332–349, December 1982.CrossRefGoogle Scholar
  28. 28.
    S. Leirens. Approche hybride pour la commade prédictive en tension d'un réseau d'énergie électrique. PhD thesis, Supélec–Université de Rennes I, Rennes, France, December 2005.Google Scholar
  29. 29.
    S. Leirens and J. Buisson. An efficient algorithm for predictive control of piecewise affine systems with mixed inputs. In Proceedings of the 2nd IFAC Conference on Analysis and Design of Hybrid Systems, pages 309–314, Alghero, Italy, June 2006.Google Scholar
  30. 30.
    J. T. Linderoth and T. K. Ralphs. Noncommercial software for mixed-integer linear programming. Technical Report 04T-023, Department of Industrial and Systems Engineering, Lehigh University, Bethlehem, Pennsylvania, December 2004.Google Scholar
  31. 31.
    J. M. Maciejowski. Predictive Control with Constraints. Prentice-Hall, Harlow, UK, 2002.Google Scholar
  32. 32.
    Y. Majanne. Model predictive pressure control of steam networks. Control Engineering Practice, 13(12):1499–1505, December 2005.CrossRefGoogle Scholar
  33. 33.
    A. Manzonic, A. S. de Silva, and I. C. Decker. Power systems, dynamics simulation using object-oriented programming. IEEE Transactions on Power Systems, 14(1):249–255, February 1999.CrossRefGoogle Scholar
  34. 34.
    The MathWorks. MATLAB and Simulink for Technical Computing, 2009.Google Scholar
  35. 35.
    S. E. Mattsson, H. Elmqvist, and M. Otter. Physical system modeling with Modelica. Control Engineering Practice, 6(4):501–510, April 1998.CrossRefGoogle Scholar
  36. 36.
    D. Q. Mayne, J. B. Rawlings, C. V. Rao, and P. O. M. Scocaert. Constrained model predictive control: Stability and optimality. Automatica, 36(6):789–814, June 2000.CrossRefGoogle Scholar
  37. 37.
    D. Mignone. Control and Estimation of Hybrid Systems with Mathematical Optimization. PhD thesis, Swiss Federal Institute of Technology (ETH), Zürich, Switzerland, 2002.Google Scholar
  38. 38.
    Modelica Association. Modelica - A Unified Object-Oriented Language for Physical Systems Modeling, Language Specification Version 3.0, September 2007.Google Scholar
  39. 39.
    A. Monticelli. Electric power system state estimation. Proceedings of the IEEE, 88(2):262–282, February 2000.CrossRefGoogle Scholar
  40. 40.
    M. Morari and J. H. Lee. Model predictive control: Past, present and future. Computers and Chemical Engineering, 23(4):667–682, 1999.CrossRefGoogle Scholar
  41. 41.
    I. R. Navarro, M. Larsson, and G. Olsson. Object-oriented modeling and simulation of power systems using Modelica. In Proceedings of the IEEE Power Engineering Society Winter Meeting, pages 790–795, Singapore, January 2000.Google Scholar
  42. 42.
    R. R. Negenborn, M. Houwing, B. De Schutter, and J. Hellendoorn. Model predictive control for residential energy resources using a mixed-logical dynamic model. In Proceedings of the 2009 IEEE International Conference on Networking, Sensing and Control, pages 702–707, Okayama, Japan, March 2009.Google Scholar
  43. 43.
    R. R. Negenborn, S. Leirens, B. De Schutter, and J. Hellendoorn. Supervisory nonlinear MPC for emergency voltage control using pattern search. Control Engineering Practice, 17(7):841–848, July 2009.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.Departamento de Ingeniería Eléctrica y ElectrónicaUniversidad de Los AndesBogotáColombia
  2. 2.Delft University of Technology, Delft Center for Systems and ControlDelftThe Netherlands

Personalised recommendations