Skip to main content

Abstract

Environmental pollution from arsenic may affect crop yield and its quality. Its increased content in soils may come from natural minerals from which the soil was formed; on the other hand, unfortunately, the increase may have an anthropogenic background. Arsenic may be released to the environment in a variety of ways, but usually with wastewater, sludge, or some pesticides. It may also appear in soil as a result of irrigation with water from reservoirs in which bottoms may contain elevated concentrations of arsenic. Plants' reactions to increased amounts of arsenic in soil may be varied. Reactions may include changes of the concentration of the metalloid, both in the overground mass and in roots. In the years 2001–2002, two pot experiments were conducted with the aim to assess the sensitivity of two crop species, maize (Zea mays L.) and orchard grass (Dactylis glomerata L.), to arsenic soil contamination with 0, 25, 50, 75, and 100 mg As/kg of soil. A second objective of the investigation was to determine the possibility of reducing arsenic phytoavailability in the contaminated soil by the application of compost, charcoal, clay, lime, and synthetic zeolite. The study demonstrated the plants' reaction by simulating the soil contamination with arsenic. Arsenic concentration in soil and its uptake by the test plants was determined, as well as the effect of the applied inactivating additives on the features mentioned above.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alloway, B. J. and D. C. Ayres. 1999. Chemiczne podstawy zanieczyszczenia środowiska. PWN Warszawa.

    Google Scholar 

  • Azcue, J. M. and J. O. Nriagu. 1994. Arsenic: Historical perspectives. In: Arsenic in the Environment. J. O. Nriagu ed. Wiley, New York. pp. 1–15.

    Google Scholar 

  • BN-78/9180-11. Gleby i utwory mineraln., Podzial na frakcje i grupy granulometryczne. Soil Textural Classification developed by the Polish Society of Soil Science.

    Google Scholar 

  • Brogowski, Z. and B. i Kocoń J. Dobrzański. 1979. Morphology of natural zeolites occurring in soil as determinated by electron microscop. Bull. Acad. Pollut. Sci. 27(1–2):125–117.

    Google Scholar 

  • Caussy, D. 2003. Case studies of the impact of understanding bioavailability: Arsenic. Ecotoxicol. Environ. Saf 56(1):164–173.

    Article  CAS  Google Scholar 

  • Curylo, T. and Cz Jasiewicz. 1998. Wplyw różnych nawozów organiczno-mineralnych na pobieranie metali ciężkich przez warzywa. Rocz. AR Poznań. Ogrodnictwo 27:39–49.

    Google Scholar 

  • Fitter, A. H., W. J. Wright, L. Williamson, M. Belshaw, J. Fairclough, and A. A. Meharg. 1998. The phosphorus nutrition of wild plants and the paradox of arsenate tolerance: Does leaf phosphate concentration control flowering? In: Phosphorus in Plant Biology: Regulatory Roles in Molecular, Cellular, Organismic and Ecosystem Processes. J. P. Lynch and J. Deikman, eds. American Society of Plant Physiologists, San Diego, CA, pp. 39–51.

    Google Scholar 

  • Frankenberger, W. T. Jr. and M. Arshad. 2002. Volatilisation of arsenic, In: Environmental Chemistry of Arsenic. W. T. Frankenberger Jr., ed. Marcel Dekker, New York. pp. 363–380.

    Google Scholar 

  • Goldberg, S. 2002. Competitive adsorption of arsenate and arsenite on oxides and clay minerals. Soil Sci. Soc. Am. J. 66:413–421.

    CAS  Google Scholar 

  • Gorlach, E. and F. GambuŻ. 2000. Potencjalne toksyczne pierwiastki Żladowe w glebach (nadmiar, szkodliwoŻć i przeciwdziałanie). Zesz. Probl. Post. Nauk Roln. 472(1):287–295.

    Google Scholar 

  • Gworek, B. 1993. Wpływ zeolitów na zmniejszenie akumulacji metali cięzkich w roŻlinach uprawianych na glebach zanieczyszczonych. Rozprawy Naukowe i Monografie. Wyd. SGGW Warszawa.

    Google Scholar 

  • Helgesen, H. and E. H. Larsen. 1998. Bioavailability and speciation of arsenic in carrots grown in contaminated soil. Analyst 123(5):791–796.

    Article  CAS  Google Scholar 

  • Kabata-Pendias, A. and H. Pendias. 1999. Biogeochemia pierwiastków śladowych, Wydawnictwo Naukowe PWN, Warszawa.

    Google Scholar 

  • Kroczyński, J., B. Morytz, Filipiak K. Przybysz. 1996. Możliwości wykorzystania zeolitów w rolnictwie. Badania nad detoksykacją środków ochrony roślin. Postępy w ochronie roślin. Poznań 36(1):342–350.

    Google Scholar 

  • Meharg, A. A. 1994. Integrated tolerance mechanisms — constitutive and adaptive plant — responses to elevated metal concentrations in the environment. Plant Cell Environ. 17:989–993.

    Article  CAS  Google Scholar 

  • Meharg, A. A. and J. Hartley-Whitaker. 2002. Arsenic uptake and metabolism in arsenic resistant and nonresistant plant species. New Phytologists 154:29–43.

    Article  CAS  Google Scholar 

  • Murphy, E. A. and M. Aucott. 1998. An assessment of the amounts of arsenical pesticides used historically in a geographical area. Sci. Total Environ. 218:89–101.

    Article  CAS  Google Scholar 

  • O'Neill, P. 1995. Arsenic. In: Heavy Metals in Soils. B. J. Alloway, ed., Springer, New York. pp. 105–121.

    Google Scholar 

  • Paivoke, A. E. A. and L. K. Simola. 2001. Arsenate toxicity to pisum sativum: Mineral nutrients, chlorophyll content, and phytase activity. Ecotoxicol. Environ. Saf 49:111–121.

    Article  CAS  Google Scholar 

  • Paliouris, G. and T. C. Hutchinson. 1991. Arsenic, cobalt and nickel tolerances in two populations of Silene vulgaris (Moench) Garcke from Ontario, Canada. New Phytologists 117:449–459.

    Article  CAS  Google Scholar 

  • Patorczyk-Pytlik, B. And Z. Spiak. 2000. Wplyw wapnowania na dostępność kadmu dla roślin. Kadm w środowisku — problemy ekologiczne i metodyczne. Zesz. Nauk. Komitetu “Czlowiek i środowisko” PAN Warszawa 26:220–225.

    Google Scholar 

  • Sharples, J. M., A. A. Meharg, S. M. Chambers, and J. W. G. Cairney. 2000. Symbiotic solution to arsenic contamination. Nature 404:951–952.

    CAS  Google Scholar 

  • Siedlecka, A., A. Tukendorf, E. Skórzyńska-Polit, W. Maksymiec, M. Wójcik, T. Baszyóski, and Z. Krupa. 2001. Angiosperms. In: Metals in the Environment: Analysis of Biodiversity. M. N. V. Prasad, ed. Marcel Dekker, Hyderabad, India, pp. 171–217.

    Google Scholar 

  • Smedley, P. L. and D. G. Kinniburgh. 2002. A review of the source, behaviour and distribution of arsenic in natural waters. Appl. Geochem. 17:517–568.

    Article  CAS  Google Scholar 

  • Spiak, Z. 1996. Gatunkowa odporność roślin na wysokie stężenie niklu w glebie. Zesz. Prob. Post. Nauk Rol. 434(2):979–984.

    Google Scholar 

  • StatSoft, 2001, STATISTICA (data analysis software system) Statsoft Inc. version 6.0 www.statsoft.com.

  • Tyksiński, W. 2002. Mechanizmy tolerancji na zwiększone zawartości metali ciężkich w glebach i podĔożach. Efektywność stosowania nawozów w uprawach ogrodniczych. Wydawnictwo AR Poznań. pp. 209–214.

    Google Scholar 

  • USEPA (United States Environmental Protection Agency). 2002.. Arsenic treatment technologies for soil, waste and water. EPA-542-R-02-004, Washington, DC.

    Google Scholar 

  • Visoottiviseth, P., K. Francesconi, and W. Sridokchan. 2002. The potential of Thai indigenous plant species for the phytoremediation of arsenic contaminated land. Environ. Pollut. 118:453–461.

    Article  CAS  Google Scholar 

  • Woolson, E. A., J. H. Axley, and P. C. Kearney. 1971. The chemistry and phytotoxicity of arsenic in soils. I. Contaminated field soils. Soil Sci. Soc. Am. Proc. 35:938–943.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this paper

Cite this paper

Zolnowski, A.C., Ciecko, Z., Najmowicz, T. (2010). Arsenic Content in and Uptake by Plants from Arsenic-Contaminated Soil. In: Kulakow, P.A., Pidlisnyuk, V.V. (eds) Application of Phytotechnologies for Cleanup of Industrial, Agricultural, and Wastewater Contamination. NATO Science for Peace and Security Series C: Environmental Security. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3592-9_9

Download citation

Publish with us

Policies and ethics