Skip to main content

Use of Forest Index or PLANOBAY in Estimation of Water Availability Due to Climate Change

  • Chapter
  • First Online:
Impact of Climate Change on Natural Resource Management

Abstract

The present study tried to estimate future water availability with the help of Forest Index or Plantation-Prioritized Basin Yield Estimation (PLANOBAY) Hydrologic model, which is a multi-event, discharge prediction model based on variation of discharge with basin area and canopy cover. RCM-PRECIS model was applied to generate future weather scenarios. The observed rainfall along with Vegetated Area Index (VAIn) was used as input to estimate basin runoff. Presence of vegetated area (forest, plantations, cropped land) in any basin would impact the quantity of basin runoff as vegetated areas could hold water with greater capacity than any nonvegetated area. Hence the estimation of runoff from vegetated and nonvegetated catchment must differ and for former, models must include or consider the relationship between vegetated area and the amount of basin runoff. In PLANOBAY, VAIn represents the relationship between vegetated area and basin runoff. VAIn represented the variance of basin area and vegetated area with respect to basin runoff. A neurogenetic model was developed to identify the patterns associated with VAIn, rainfall, and basin runoff. Dataset of 3 decades (1970–2002) was employed to train the model. After the successful completion of training, models were compared with three conceptual models, namely, Hydrologic Engineering Centre – Hydrologic Modeling System (HECHMS), Trend Research Manual of 1955 (TR55), and MODified RATional (MODRAT) hydrologic model. The better model among the four was identified with the help of root mean square error (RMSE), correlation coefficient (r), coefficient of efficiency (E), and first-order uncertainty analysis (U). Future water availability was estimated with the help of estimated stream flow from the selected model, estimated rainfall from PRECIS climatic model-generated weather scenarios, and Water Budget equation. According to the results, PLANOBAY model was selected as better model among the four, and according to the estimations from the same model, future water availability of the two river basins would reduce for both A2 and B2 scenario of climate change where the water scarcity would be more pronounced in A2 than in B2.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Brooks K et al (1990) Hydrology and the management of watersheds. Iowa State University Press, Ames

    Google Scholar 

  • Callahan TJ, Cook JD, Coleman MD, Amatya DM, Trettin CC (2004) Modeling storm water runoff and soil interflow in a managed forest, upper coastal plain of the southeast US, Proceedings of ASAE annual meeting, American Society of Agricultural and Biological Engineers, Paper number 042254

    Google Scholar 

  • Das NG (1991) Statistical methods in commerce, accountance and economics, Part – 1. M. Das & Co., Kolkata, pp 25–50

    Google Scholar 

  • Franco C, Drew AP, Heisler G (2008) Impacts of urban runoff on native woody vegetation at Clark reservation state park, Jamesville, NY, J Urb Habitats. Retrieved from http://www.urbanhabitats.org/v05n01/runoff_full.html on June 2009

  • Gomi T, Sidle RC, Miyata S, Kosugi K, Onda Y (2008) Dynamic runoff connectivity of overland flow on steep forested hillslopes: scale effects and runoff transfer. Water Resour Res 44:W08411, doi:10.1029/2007WR005894

    Article  Google Scholar 

  • GWSP Digital Water Atlas (2008) Map 52: change in runoff due to deforestation (V1.0). Available online at http://atlas.gwsp.org

  • Hewlett JD (1982) Principles of forest hydrology. University of Georgia Press, Athens

    Google Scholar 

  • Idson PFF (2009) Methods of studying the dependence of river runoff on the forest coverage of its basin. Retrieved from http://www.cig.ensmp.fr/~iahs/redbooks/a048/048032.pdf on June, 2009

  • IPCC (2007) Climate change 2007: the physical sciences basis, retrieved on http://ipcc-wg1.ucar.edu/wg1/wg1-report.html. on 30th April, 2009

  • Lau CC, Lee KT, Tung CP, Chang CH (1999) Assessment of climate-change impact on runoff using normalized difference vegetation index. Retrieved from http://www.gisdevelopment.net/aars/acrs/1999/ts2/ts2045.asp on June 2009

  • Jr M, Tyler G (1990) Living in the environment, 6th edn. Wadsworth Publishing Company, Belmont, CA

    Google Scholar 

  • Oliviera FP (2006) Hydric erosion in forest areas in the Rio DoceValley, central-east region of the state of Minas Gerais, University Federal de Lavras, Brasil. Retrieved from http://biblioteca.universia.net/html_bura/ficha/params/id/17531366.html on June 2009

  • Perry DA (1994) Forest ecosystems. The Johns Hopkins University Press, Baltimore, MD

    Google Scholar 

  • Spurr SH, Barnes BV (1980) Forest ecology. Wiley, New York

    Google Scholar 

  • Statistics Solution (2009) Retrieved from http://www.statisticssolutions.com/reliability-analysis on July 16, 2009

  • Tiju C, Xiaojing T (2007) Impact of forest harvesting on river runoff in the Xiaoxing’an Mountains of China. J Frontiers Forest China 2(2):143–147

    Article  Google Scholar 

  • Wemple BC, Jones JA (2003) Runoff production on forest roads in a steep, mountain catchment. Water Resour Res 39(8):1220, doi:10.1029/2002WR001744

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mrinmoy Majumder .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Majumder, M., Dutta, S., Barman, R.N., Jana, B.K., Roy, P., Mazumdar, A. (2010). Use of Forest Index or PLANOBAY in Estimation of Water Availability Due to Climate Change. In: Jana, B., Majumder, M. (eds) Impact of Climate Change on Natural Resource Management. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3581-3_3

Download citation

Publish with us

Policies and ethics