Skip to main content

Introduction to Climate Change and Climate Models

  • Chapter
  • First Online:
Book cover Impact of Climate Change on Natural Resource Management
  • 1551 Accesses

Abstract

Climate change is defined as the change in the weather pattern of a region. The models which are employed to predict climate change of the future are collectively called as climate models. The present note describes the formation, structures, and working principles of global as well as regional climate models. The note also describes the climate change scenarios that are presently created.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Antoine D, Morel A (1995) Modeling the seasonal course of the upper ocean pCO2 (i): development of a one-dimensional model. Tellus 47B:103–121

    CAS  Google Scholar 

  • Atmospheric Model Intercomparison Project (2009). Retrieved from http://www-pcmdi.llnl.gov/projects/amip/index.php

  • Bacastow R, Maier-Reimer E (1990) Ocean-circulation model of the carbon cycle. Climate Dyn 4:95–125

    Article  Google Scholar 

  • Bintanja R (1995) The Antarctic ice sheet and climate. Ph.D. thesis, Utrecht University, Utrecht

    Google Scholar 

  • Boucher O, Lohmann U (1995) The sulfate-CCN-cloud albedo effect: a sensitivity study with two general circulation models. Tellus 47B:281–300

    CAS  Google Scholar 

  • Chin M, Jacob DJ, Gardner GD, Foreman-Fowler MS, Spiro PA (1996) A global three-dimensional model of tropospheric sulfate. J Geophys Res 101:18667–18690

    Article  CAS  Google Scholar 

  • Climate Prediction (2009) Regional Climate Models. Retrieved from http://www.climateprediction.net/content/regional-climate-models on 28 July 2009

  • Collins M, Tett SFB, Cooper C (2001) The internal climate variability of HadCM3, a version of the Hadley Centre coupled model without flux adjustments. Climate Dyn 17:61–81. doi:10.1007/s003820000094

    Article  Google Scholar 

  • De Wolde JR, Bintanja R, Oerlemans J (1995) On thermal expansion over the last one hundred years. J Climate 8:2881–2891

    Article  Google Scholar 

  • Dickinson RE, Meleshko V, Randall D, Sarachik E, Silva-Dias P, Slingo A (1996) Climate processes. In: Houghton JT, Filho LGF, Callander BA, Harris N, Kattenberg A, Kattenberg A, Maskell K (eds) Climate change 1995: the science of climate change. Cambridge University Press, Cambridge, pp 193–227

    Google Scholar 

  • Foley JA, Prentice C, Ramankutty N, Levis S, Pollard D, Sitch S, Haxeltine A (1996) An intergrated biosphere model of land surface processes, terrestrial carbon balance, and vegetation dynamics. Global Biogeochem Cycle 10:603–628

    Article  CAS  Google Scholar 

  • Fujihara Y, Tanaka K, Watanabe T, Nagano T, Kojiri T (2008) Assessing the impacts of climate change on the water resources of the Seyhan River Basin in Turkey. J Hydrol 353(1–2):33–48

    Article  Google Scholar 

  • Gordon C, Cooper C, Senior CA, Banks H, Gregory JM, Johns TC, Mitchell JFB, Wood RA (2000) The simulation of SST, sea ice extents and ocean heat transports in a version of the Hadley Centre coupled model without flux adjustments ([dead link]). Climate Dyn 16:147–168. doi:10.1007/s003820050010. http://www.met-office.gov.uk/research/hadleycentre/models/gordon00/index.html

  • Gregg WW, Walsh JJ (1992) Simulation of the 1979 spring bloom in the mid-Atlantic bight: a coupled physical/biological model. J Geophys Res 97:5723–5743

    Article  Google Scholar 

  • Harvey LD (1992) A two-dimensional ocean model for long-tern climate simulations: stability and coupling to atmospheric and sea ice models. J Geophys Res 97:9435–9453

    Article  Google Scholar 

  • Harvey LDD (2000) Global Warming: The Hard Science. Prentice Hall, Harlow

    Google Scholar 

  • Haywood JM, Roberts DI, Slingo A, Edwards JM, Shine KP (1997) General circulation model calculations of the direct radiative forcing by anthropogenic sulfate and fossil-fuel soot aerosol. J Climate 10:1562–1577

    Article  Google Scholar 

  • Held 1M, Suarez MJ (1974) Simple albedo feedback models of the icecaps. Tellus 26:613–630

    Article  Google Scholar 

  • Hotchkiss RH, Jorgensen SF, Stone MC, Fontaine TA (2000) Regulated river modeling for climate change impact assessment: the Missouri river. J Am Water Resour Assoc 36(2):375–386

    Article  Google Scholar 

  • Hoffert MI, Callegari AJ, Hseih CT (1980) The role of deep sea heat storage in the secular response to climatic forcing. J Geophys Res 85:6667–6679

    Article  Google Scholar 

  • Hoffert HI, Callegari AJ, Hseih CT (1981) A box-diffusion carbon cycle model with upwelling, polar bottom water formation and a marine biosphere. In: Bolin B (ed) Carbon cycle modeling, SCOPE 16. Wiley, New York, pp 287–305

    Google Scholar 

  • Huybrechts P, Oerlemans J (1990) Response of the Antartic ice sheet to future greenhouse warming. Climate Dyn 5:93–102

    Google Scholar 

  • Huybrechts P, Letreguilly A, Rech N (1991) The Greenland ice sheet and greenhouse warming. Palaeogeogr Palaeoclimatol Palaeoecol 89:399–412

    Article  Google Scholar 

  • IPCC (2007) Climate change 2007: the physical sciences basis, retrieved on http://ipcc-wg1.ucar.edu/wg1/wg1-report.html. on 30th April, 2009

  • Jones A, Slingo A (1996) Predicting cloud-droplet effective radius and indirect sulphate aerosol forcing using a general circulation model. Q J Roy Meteorol Soc 122:1573–1595

    Google Scholar 

  • Ko MKW, Size ND, Wang WC, Shia G, Goldman A, Muecary FJ, Murcaray DG, Rinsland CP (1993) Atmospheric sulfur hexafluoride: sources, sinks, and greenhouse warming. J Geophys Res 98:10499–10507

    Article  Google Scholar 

  • Kogan ZN, Kogan YL, Lilly DK (1996) Evaluation of sulfate aerosol’s indirect effect in marine stratocumulus clouds using observation-derived cloud climatology. Geophys Res Lett 23:1937–1940

    Article  CAS  Google Scholar 

  • Krishnakumar K (2009) Climate change scenario. Proceeding of NATCOM 2 Workshop, organized by Indian Institute of Tropical Meteorology, Pune

    Google Scholar 

  • Lal M, Ramanathan V (1984) The effects of moist convection and water-vapor rediative processes on climate sensitivity. J Atmos Sci 41:2238–2249

    Article  CAS  Google Scholar 

  • Langner J, Rodhe H (1991) A global dimensional model of the tropospheric sulfur cycle. J Atmos Chem 13:225–263

    Article  CAS  Google Scholar 

  • Lohmann U, Feichter J (1997) Impact of sulfate aerosols on albedo and lifetime of clouds: a sensitivity study with the ECHAM4 GCM. J Geophys Res 102:13685–13700

    Article  CAS  Google Scholar 

  • Melillo JM, McGuire AD, Kicklighter DW, Moore B III, Vorosmarty CJ, Schloss AL (1993) Global climate change and terrestrial net primary production. Nature 363:234–240

    Article  CAS  Google Scholar 

  • Merritt WS, Alila Y, Barton M, Taylor B, Cohen S (2006) Hydrologic response to scenarios of climate change in sub watersheds of the Okanagan basin, British. J Hydrol 326:79–108

    Article  Google Scholar 

  • Mendoza VM, Villanueva EE, Garduño R, Nava Y, Santisteban G, Mendoza AS, Oda B, Adem J (2008) Thermo-hydrological modelling of the climate change effect on water availability in two hydrologic regions of Mexico. Royal Meteorol Soc 29(8):1131–1153

    Google Scholar 

  • Muluye GY, Coulibaly P (2007) Seasonal reservoir inflow forecasting with low-frequency climatic indices: a comparison of data-driven methods. Hydrol Sci J 52(3):508–522

    Article  Google Scholar 

  • Najjar RG, Sarmiento JL, Toggweiler JR (1992) Downward transport and fate of organic matter in the ocean: simulations with a general circulation model. Global Biogeochem Cycle 6:45–76

    Article  CAS  Google Scholar 

  • Osborn TJ, Wigley TML (1994) A simple model for estimating methane concentrations and lifetime variations. Climate Dyn 9:181–193

    Article  Google Scholar 

  • Oschlies A, Garcon V (1999) An eddy-permitting coupled physical-biological model of the North Atlantic, 1, sensitivity to physics and numerics. Global Biogeochem Cycle 13:135–160

    Article  CAS  Google Scholar 

  • Oschlies A, Koeve W, Garcon V (2000) An eddypermitting coupled physical model of the North Atlantic 2. Ecosystem dynamics and comparison with satellite and JGOFS local studies data. Global Biogeochem Cycle 14:499–523

    Article  CAS  Google Scholar 

  • Peng L, Chou M-D, Arking A (1982) Climate studies with a multi-layer energy balance model. Part I: model description and sensitivity to the solar constant. J Atmos Sci 39:2639–2656

    Article  Google Scholar 

  • Pham M, Muller J-F, Brasseur GP, Granier C, Megie G (1996) A 3D model study of the global sulphur cycle: contributions of anthropogenic and biogenic sources. Atmos Environ 30:1815–1822

    Article  Google Scholar 

  • Plochl M, Cramer W (1995) Coupling global models of vegetation structure and ecosystem processes. Tellus 47B:240–250

    Google Scholar 

  • Pope VD, Gallani ML, Rowntree PR, Stratton RA (2000) The impact of new physical parameterizations in the Hadley centre climate model – HadAM3” ([dead link]). Climate Dyn 16:123–146. doi:10.1007/s003820050009. http://www.met-office.gov.uk/research/hadleycentre/models/pope00/index.html

  • Prather M, Ibrahim AM, Sasaki T, Stordal F (1992) Future chlorine-bromine loading and ozone depletion in United Nations Environment Programme Staff (eds) Scientific Assessment of Ozone Depletion: 1991. World Meteorological Organization, Geneva

    Google Scholar 

  • Rastetter EB, McKane RB, Shaver GR, Melillo JM (1992) Changes in C storage by terrestrial ecosystems: how C-N interactions restrict responses to CO2 and temperature. Water Air Soil Pollut 64:327–344

    Article  CAS  Google Scholar 

  • Roth D (2006) Hydrometeorological prediction center. Unified Surface Analysis Manual. Retrieved on 2006-10-24

    Google Scholar 

  • Sarmiento JL, Slater RD, Fasham MJR, Ducklow HW, Toggweiler JR, Evans GT (1993) A seasonal three-dimensional ecosystem model of nitrogen cycling in the North Atlantic euphotic zone. Global Biogeochem Cycle 7:417–450

    Article  CAS  Google Scholar 

  • Stewart P, Le CF, Vemuri SR (2006) (Anticipated) Climate change impacts on Australia. Int J Ecol Dev 4(W06)

    Google Scholar 

  • Stocker TF, Broecker WS, Wright DG (1994) Carbon uptake experiment with a zonally averaged global ocean circulation model. Tellus 46B:103–122

    CAS  Google Scholar 

  • Trenberth KE (ed) (1992) Climate system modeling. Cambridge University Press, Cambridge

    Google Scholar 

  • UniSci (2001) Climate model will be first to use a geodesic grid. Retrieved from http://www.unisci.com/stories/20013/0924011.htm on 30 July 2009

  • Van Minnen JG, Goldewijk KK, Leemans R (1996) The importance of feedback processes and vegetation transition in the terrestrial carbon cycle. J Biogeogr 22:805–814

    Article  Google Scholar 

  • Members VEMAP (1995) Vegetation ecosystem modeling and analysis project: comparing biogeography and biogeochemistry models in a continental-scale study of terrestrial ecosystem responses to climate change and CO2 doubling. Global Biogeochem Cycle 9:407–437

    Article  Google Scholar 

  • Verbitsky M, Saltzman B (1995) Behaviour of the Esat Antractic ice sheet as deduced from a coupled GCM/Ice-sheet models. Geophys Res Lett 22:2913–2916

    Article  Google Scholar 

  • Wang C, Prinn RG, Sokolov A (1998) A global interactive chemistry and climate model: formulation and testing. J Geophys Res 103:3399–3417

    Article  CAS  Google Scholar 

  • Wright DG, Stocker TK (1991) A zonally averaged ocean model for the themohaline circulation, I. Model development and flow dynamics. J Phys Oceanogr 21:1713–1724

    Article  Google Scholar 

Download references

Acknowledgement

The authors would like to state that the above article is only for education purpose. The concepts are well discussed in different literatures. The reason for addition was merely to educate readers about development of climate models.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mrinmoy Majumder .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Majumder, M. (2010). Introduction to Climate Change and Climate Models. In: Jana, B., Majumder, M. (eds) Impact of Climate Change on Natural Resource Management. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3581-3_23

Download citation

Publish with us

Policies and ethics