Skip to main content

Linus Pauling’s Breakthrough to the Theory of Aromatic Compounds and Hückel’s Reaction

  • Chapter
  • First Online:
Erich HÜckel (1896–1980)

Part of the book series: Boston Studies in the Philosophy of Science ((BSPS,volume 283))

  • 812 Accesses

Abstract

In the mid-1930s Wheland and Pauling set out to find a quantum theoretical basis for Ingold’s general electronic theory of organic reactions. A brief outline of Ingold’s main concepts will provide the necessary background for an evaluation of their contribution and Hückel’s discussion of it.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Cf. Nye, M. J.: From Chemical Philosophy to Theoretical Chemistry 1993, Chap. 8, Reaction Mechanisms: Christopher Ingold and the Integration of Physical and Organic Chemistry, 1920–1950, pp. 196–226.

  2. 2.

    Cf. Ingold, C. K.: Principles of an Electronic Theory of Organic Reactions, 1934.

  3. 3.

    Cf. Ingold, C. K.: The Principles of Aromatic Substitution from the Standpoint of the Electronic Theory of Valency, in: Recueil des Travaux Chimiques 48 (1929), 797–812; Significance of Tautomerism and of the Reactions of Aromatic Compounds in the Electronic Theory of Organic Reactions, in: Journal of the Chemical Society (London) (1933), 1120–1127.

  4. 4.

    Sutton, L. E.: The Significance of the Differences between the Dipole Moments of Saturated and Unsaturated Substances, in: Proceedings of the Royal Society of London (A) 133 (1931), 668–695.

  5. 5.

    Cf. Nye, M. J.: From Chemical Philosophy to Theoretical Chemistry (1993), pp. 208–210.

  6. 6.

    It is noteworthy that Arndt and Eistert included this effect caused by external disturbance in their concept of mesomerism. Cf. Arndt, F., Eistert, B.: Über den “Resonanz” – und “Zwischenstufen” – Begriff bei organischen Substanzen mit mehrfachen Bindungen und die Elektronenformeln, in: ZPC-B 31 (1935), 125–131.

  7. 7.

    Wheland, G. W., Pauling, L.: A Quantum Mechanical Discussion of Orientation of Substituents in Aromatic Molecules, in: JACS 57 (1935), 2086–2095.

  8. 8.

    See Section 3.2.

  9. 9.

    Wheland, G. W., Pauling, L.: A Quantum Mechanical Discussion of Orientation of Substituents in Aromatic Molecules, 1935, p. 2088.

  10. 10.

    Ibid.

  11. 11.

    Ibid., p. 2089.

  12. 12.

    Ibid., p. 2090.

  13. 13.

    Wheland and Pauling summarized the result of their investigations as follows: “Using the method of molecular orbitals, a quantitative discussion of the charge distribution in aromatic molecules undergoing substitution reactions is carried out, taking into consideration the inductive effect, the resonance effect, and the polarizing effect of the attacking group. It is shown that, with reasonable values for the parameters involved, the calculated charge distributions for pyridine, toluene, phenyltrimethylammonium ion, nitribenzene, benzonitrile, furan, thiophene, pyrrole, aniline, phenol, naphthalene, and the halogen benzenes are in qualitative agreement with the experimental results regarding position and rate of substitution.” Ibid., p. 2095.

  14. 14.

    Hückel, E.: Kritische Betrachtungen zur Theorie der Substitutionsreaktionen an substituierten Benzolen, in: ZPC-B 35 (1937), 163–192.

  15. 15.

    Ibid., p. 188.

  16. 16.

    Ibid., p. 192.

  17. 17.

    Ibid., pp. 165–169.

  18. 18.

    Ibid., p. 169. Cf. Hückel, E.: Grundzüge der Theorie ungesättigter und aromatischer Verbindungen, pp. 844–845.

  19. 19.

    Hückel, E.: Aromatic and Unsaturated Molecules: Contributions to the Problem of their Constitution and Properties, in: International Conference on Physics, Paper and Discussions, The Physical Society, London, 1935. The University Press, Cambridge, 1935, vol. II, p. 35. For further details about Hückel’s talk, see Section 3.2.

  20. 20.

    Pauling, L.: The Diamagnetic Anisotropy of Aromatic Molecules, in: JCP 4 (1938), 673–677.

  21. 21.

    Pauling, L.: The Diamagnetic Anisotropy of Aromatic Molecules, 1938, p. 673.

  22. 22.

    Cf. Garratt, P., Vollhardt, P.: Aromatizität, 1973, pp. 28–30.

  23. 23.

    Raman, C. V., Krishnan, K. S.: Magnetic Double-Refraction in Liquids. Part I – Benzene and its Derivates, in: Proceedings of the Royal Society of London A 113 (1927), 511–519.

  24. 24.

    Pauling, L.: The Diamagnetic Anisotropy of Aromatic Molecules, 1936, p. 674.

  25. 25.

    Ibid., p. 677.

  26. 26.

    Pople, J. A.: Proton Magnetic Resonance of Hydrocarbons, in: JCP 24 (1956), p. 1111.

  27. 27.

    See Section 2.2.1, footnote 121 (bibliography on aromaticity).

  28. 28.

    Londale, K.: Magnetic Anisotropy and Electronic Structure of Aromatic Molecules, in: Proceedings of the Royal Society of London 159 (1937), 149–161.

  29. 29.

    Hückel, E.: Quantentheoretische Beiträge I, p. 241.

  30. 30.

    Hückel, E.: Grundzüge der Theorie ungesättigter und aromatischer Verbindungen, 1937, p. 837, footnote 2.

  31. 31.

    Ibid.

  32. 32.

    For more details see Gavroglu, K.: Fritz London a Scientific Biography, Chap. 3, Oxford and Superconductivity bzw. Chap. 4, Paris und superfluidity.

  33. 33.

    Cf. London, F.: Théorie quantique du diamagnétisme des combinaisons aromatiques, in: Comptes Rendus 205 (1937), 28–30.

  34. 34.

    London, F.: Supraconductivity in Aromatic Molecules, in: JCP 5 (1937), 837–838. (emphasis in the original English). See also London, F.: Théorie quantique des courants interatomiques dans les combinaisons aromatiques, in: Journal de Physique et le Radium 8 (1937), 397–409.

  35. 35.

    Hückel, E.: Grundzüge der Theorie ungesättigter und aromatischer Verbindungen, 1937, p. 777.

  36. 36.

    Hückel added the comment that eigenfunctions belonging to such states are real.

  37. 37.

    Hückel, E.: Grundzüge der Theorie ungesättigter und aromatischer Verbindungen, 1937, p. 777.

  38. 38.

    Ibid., p. 778.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Karachalios .

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Karachalios, A. (2010). Linus Pauling’s Breakthrough to the Theory of Aromatic Compounds and Hückel’s Reaction. In: Erich HÜckel (1896–1980). Boston Studies in the Philosophy of Science, vol 283. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3560-8_4

Download citation

Publish with us

Policies and ethics