Skip to main content

Algorithm Using Expanded LZ Compression Scheme for Compressing Tree Structured Data

  • Chapter
  • First Online:

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 52))

Abstract

Due to the rapid growth of information technologies, the use of electronic data such as XML/HTML documents, which are a form of tree structured data, has been rapidly increasing. We have developed an algorithm for effectively compressing tree structured data and one for decompressing a compressed tree that are based on the Lempel–Ziv compression scheme. Next, we have implemented both compression and decompression algorithms by applying our algorithms for the XMill compressor and XDemill decompressor presented by Liefke and Suciu. Then, testing using synthetic large ordered trees and real-world tree structured data demonstrated the effectiveness and efficiency of our algorithms.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Abiteboul, S., Buneman, P., & Suciu, D. (2000). Data on the Web: from relations to semistructured data and XML. Morgan Kaufmann. San Francisco, CA, USA.

    Google Scholar 

  2. Adiego, J., Navarro, G., & de la Fuente, P. (2004). Lempel-ziv compression of structured text. Proceedings of the IEEE data compression conference (DCC 2004) (pp. 112–121).

    Google Scholar 

  3. Cheney, J. (2001). Compressing xml with multiplexed hierarchical ppm models. Proceedings of the IEEE data compression conference (DCC 2001) (pp. 163–172).

    Google Scholar 

  4. Cook, D.J., & Holder, L.B. (2000). Graph-based data mining. IEEE Intelligent Systems, 15(2), 32–41.

    Article  Google Scholar 

  5. Itokawa, Y., Uchida, T., Shoudai, T., Miyahara, T., & Nakamura, Y. (2003). Finding frequent subgraphs from graph structured data with geometric information and its application to lossless compression. Proceedings of the 7th Pacific–Asia conference on advances in knowledge discovery and data mining (PAKDD-2003), Springer, LNAI 2637 (pp. 582–594).

    Google Scholar 

  6. Kida, T., Matsumoto, T., Shibata, Y., Takeda, M., Shinohara, A., & Arikawa, S. (2003). Collage system: a unifying framework for compressed pattern matching. Theoretical Computer Science, 1(298), 253–272.

    Article  MathSciNet  Google Scholar 

  7. Liefke, H., & Suciu, D. (2000). Xmill: an efficient compressor for xml data. Proceedings of the 2000 ACM SIGMOD international conference on management of data (pp. 153–164).

    Google Scholar 

  8. Matsumoto, S., Hayashi, Y., & Shoudai, T. (1997). Polynomial time inductive inference of regular term tree languages from positive data. Proceedings of the 8th workshop on algorithmic learning theory (ALT-97), Springer, LNAI 1316 (pp. 212–227).

    Google Scholar 

  9. Sakamoto, H. (2005). A fully linear-time approximation algorithm for grammar-based compression. Journal of Discrete Algorithms, 3(2–4), 416–430.

    Article  MathSciNet  MATH  Google Scholar 

  10. Storer, J.A., & Szymanski, T.G. (1982). Data compression via textual substitution. Journal of the ACM, 29(4), 928–951.

    Article  MathSciNet  MATH  Google Scholar 

  11. Suzuki, Y., Shoudai, T., Uchida, T., & Miyahara, T. (2006). Ordered term tree languages which are polynomial time inductively inferable from positive data. Theoretical Computer Science, 350, 63–90.

    Article  MathSciNet  MATH  Google Scholar 

  12. Tolani, P.M., & Haritsa, J.R. (2002). Xgrind: a query-friendly xml compressor. Proceedings of the 18th international conference on data engineering (pp. 225–234).

    Google Scholar 

  13. Yamagata, K., Uchida, T., Shoudai, T., & Nakamura, Y. (2003). An effective grammar-based compression algorithm for tree structured data. Proceedings of the 13th international conference on inductive logic programming (ILP-03), Springer, LNAI 2835 (pp. 383–400).

    Google Scholar 

  14. Yasamaki, H., Sasaki, Y., Shoudai, T., Uchida, T., & Suzuki, Y. (2009). Learning block-preserving graph patterns and its application to data mining. Machine Learning, 76, 137–173.

    Article  Google Scholar 

  15. Ziv, J., & Lempel, A. (1977). A universal algorithm for sequential data compression. IEEE Transactions on Information Theory, IT-23(3), 337–343.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuko Itokawa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Itokawa, Y., Katoh, K., Uchida, T., Shoudai, T. (2009). Algorithm Using Expanded LZ Compression Scheme for Compressing Tree Structured Data. In: Huang, X., Ao, SI., Castillo, O. (eds) Intelligent Automation and Computer Engineering. Lecture Notes in Electrical Engineering, vol 52. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3517-2_26

Download citation

  • DOI: https://doi.org/10.1007/978-90-481-3517-2_26

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-3516-5

  • Online ISBN: 978-90-481-3517-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics