Skip to main content

Xenobiotics Removal by Membrane Technology: An Overview

  • Chapter
  • First Online:
Xenobiotics in the Urban Water Cycle

Part of the book series: Environmental Pollution ((EPOL,volume 16))

Abstract

Small molecular weight xenobiotics are compounds of extreme concern in potable water applications due to their adverse human health and environmental effects. However, conventional water treatment processes cannot fully and systematically remove them due to their low concentrations in natural waters and wastewaters. Biological limitation to degrade such compounds is another cause for inefficient removal.

Physical barriers like membranes possessing pore sizes smaller than the compounds to be removed emerged as a good solution. Nanofiltration and reverse osmosis proved to be quite effective for xenobiotics removal in potable water production in the Paris purification plant of Méry-sur-Oise. However, even these very narrow pore membrane processes may result in incomplete removal: xenobiotics retention is high but factors such as adsorption, size exclusion and charge repulsion affect unpredictably their retention. The water solutions complexity to be treated renders xenobiotics removal predictions even more difficult due to interactions between xenobiotics and compounds in water.

Removal of xenobiotics by microfiltration and ultrafiltration is very low because adsorption on the membrane is the main retention mechanism. Combining those with other processes (e.g. activated carbon) can considerably improve xenobiotics removal.

The least studied processes in xenobiotics removal are electrodialysis, membrane distillation and pervaporation. Electrodialysis removal of organic xenobiotics shows a breakthrough through the membrane possibly due to adsorption followed by diffusion. Membrane distillation presents high removal rates of xenobiotics due to the compounds low vapour pressure. For volatile organic xenobiotics or solutions of trace amounts both membrane distillation and pervaporation can be used, xenobiotics interaction with the membrane being the key factor.

In this book chapter a thorough synopsis of current knowledge on xenobiotics removal is presented and balanced with recent fundamental studies of underlying mechanisms, informing both the practitioner regarding membrane capabilities for xenobiotics removal and the researcher with the current state-of-art.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agbekodo, K. M., Legube, B., & Dard, S. (1996). Atrazine and simazine removal mechanisms by nanofiltration: Influence of natural organic matter concentration. Water Research, 30, 2535-2542.

    Article  CAS  Google Scholar 

  • Agenson, K. O., & Urase, T. (2007). Change in membrane performance due to organic fouling in nanofiltration (NF)/reverse osmosis (RO) applications. Separation and Purification Technology, 55, 147-156.

    Article  CAS  Google Scholar 

  • Ahmad, A. L., Tan, L. S., & Abd. Shukor, S. R. (2008). The role of pH in nanofiltration of atrazine and dimethoate from aqueous solution. Journal of Hazardous Materials, 154, 633-638.

    Google Scholar 

  • Al-Rifai, J. H. (2008). Performance of water recycling technologies. Ph.D. thesis, University of Wollongong, New South Wales, Australia.

    Google Scholar 

  • Al-Rifai, J. H., Gabelish, C. L., & Schäfer, A. I. (2007). Occurrence of pharmaceutically active and non-steroidal estrogenic compounds in three different wastewater recycling schemes in Australia. Chemosphere, 69, 803-815.

    Article  CAS  Google Scholar 

  • Anselme, C., & Jacobs, E. P. (1996). Ultrafiltration. In J. Mallevialle, P. E. Odendaal, & M. R. Wiesner (Eds.), Water treatment membrane processes (pp. 10.1-10.88). New York: McGraw-Hill.

    Google Scholar 

  • Aptel, P., & Buckley, C. A. (1996). Categories of membrane operations. In J. Mallevialle, P. E. Odendaal, & M. R. Wiesner (Eds.), Water treatment membrane processes (pp. 2.1-2.24). New York: McGraw-Hill.

    Google Scholar 

  • Banasiak, L. J., Kruttschnitt, T. W., & Schäfer, A. I. (2007). Desalination using electrodialysis as a function of voltage and salt concentration. Desalination, 205, 38-46.

    Article  CAS  Google Scholar 

  • Banasiak, L. J., & Schäfer, A. I. (2009). Removal of boron, fluoride and nitrate by electrodialysis in the presence of organic matter. Journal of Membrane Science, 334, 101-109.

    Article  CAS  Google Scholar 

  • Banat, F. A., & Simandl, J. (1996). Removal of benzene traces from contaminated water by vacuum membrane distillation. Chemical Engineering Science, 51, 1257-1265.

    Article  CAS  Google Scholar 

  • Baronti, C., Curini, R., D’Ascenzo, G., Di Corcia, A., Gentili, A., & Samperi, R. (2000). Monitoring natural and synthetic estrogens at activated sludge sewage treatment plants and in a receiving river water. Environmental Science and Technology, 34, 5059-5066.

    Article  CAS  Google Scholar 

  • Batt, A. L., Kostich, M. S., & Lazorchak, J. M. (2008). Analysis of ecologically relevant pharmaceuticals in wastewater and surface water using selective solid-phase extraction and UPLC-MS/MS. Analytical Chemistry, 80, 5021-5030.

    Article  CAS  Google Scholar 

  • Baumgarten, S., Schröder, H. F., & Pinnekamp, J. (2006). Performance of membrane bioreactors used for the treatment of wastewater from the chemical and textile industries. Water Science and Technology, 53, 61-67.

    Article  CAS  Google Scholar 

  • Berg, P., Hagmeyer, G., & Gimbel, R. (1997). Removal of pesticides and other micropollutants by nanofiltration. Desalination, 113, 205-208.

    Article  CAS  Google Scholar 

  • Bitter, J. G. A. (1991). Transport mechanisms in membrane separation processes. New York: Plenum Press.

    Google Scholar 

  • Bodzek, M., & Dudziak, M. (2006). Elimination of steroidal sex hormones by conventional water treatment and membrane processes. Desalination, 198, 24-32.

    Article  CAS  Google Scholar 

  • Bowen, W. R., & Welfoot, J. S. (2005). Modelling the performance of nanofiltration membranes. In A. I. Schäfer, A. G. Fane & T. D. Waite (Eds.), Nanofiltration: Principles and applications (pp. 119-146). Oxford: Elsevier.

    Google Scholar 

  • Braga, O., Smythe, G. A., Schäfer, A. I., & Feitz, A. J. (2005). Steroid estrogens in ocean sediments. Chemosphere, 61, 827-833.

    Article  CAS  Google Scholar 

  • Broom, G. P., Squires, R. C., Simpson, M. P. J., & Martin, I. (1994). The treatment of heavy metal effluents by crossflow microfiltration. Journal of Membrane Science, 87, 219-230.

    Article  CAS  Google Scholar 

  • California Department of Public Health. (2006). A brief history of NDMA findings in drinking water. Retrieved March 17, 2009, from http://www.cdph.ca.gov/certlic/drinkingwater/Pages/NDMAhistory.aspx.

  • Cartinella, J. L., Cath, T. Y., Flynn, M. T., Miller, G. C., Hunter, K. W., & Childress, A. E. (2006). Removal of natural steroid hormones from wastewater using membrane contactor processes. Environmental Science and Technology, 40, 7381-7386.

    Article  CAS  Google Scholar 

  • Chang, S., Waite, T. D., Ong, P. E. A., Schäfer, A. I., & Fane, A. G. (2004). Assessment of trace estrogenic contaminants removal by coagulant addition, powdered activated carbon adsorption and powdered activated carbon/microfiltration processes. Journal of Environmental Engineering, 130, 736-742.

    Article  CAS  Google Scholar 

  • Chang, S., Waite, T. D., Schafer, A. I., & Fane, A. G. (2003). Adsorption of the endocrine-active compound estrone on microfiltration hollow fiber membranes. Environmental Science and Technology, 37, 3158-3163.

    Article  CAS  Google Scholar 

  • Chian, E. S. K., Bruce, W. N., & Fang, H. H. P. (1975). Removal of pesticides by reverse osmosis. Environmental Science and Technology, 9, 52-59.

    Article  CAS  Google Scholar 

  • Childress, A. E., & Elimelech, M. (1996). Effect of solution chemistry on the surface charge of polymeric reverse osmosis and nanofiltration membranes. Journal of Membrane Science, 119, 253-268.

    Article  CAS  Google Scholar 

  • Choo, K. H., Kwon, D. J., Lee, K. W., & Choi, S. J. (2002). Selective removal of cobalt species using nanofiltration membranes. Environmental Science and Technology, 36, 1330-1336.

    Article  CAS  Google Scholar 

  • Clara, M., Strenn, B., Gans, O., Martinez, E., Kreuzinger, N., & Kroiss, H. (2005). Removal of selected pharmaceuticals, fragrances and endocrine disrupting compounds in a membrane bioreactor and conventional wastewater treatment plants. Water Research, 39, 4797-4807.

    Article  CAS  Google Scholar 

  • Comerton, A. M., Andrews, R. C., Bagley, D. M., & Hao, C. (2008). The rejection of endocrine disrupting and pharmaceutically active compounds by NF and RO membranes as a function of compound and water matrix properties. Journal of Membrane Science, 313, 323-335.

    Article  CAS  Google Scholar 

  • Comerton, A. M., Andrews, R. C., Bagley, D. M., & Yang, P. (2007). Membrane adsorption of endocrine disrupting compounds and pharmaceutically active compounds. Journal of Membrane Science, 303, 267-277.

    Article  CAS  Google Scholar 

  • Couffin, N., Cabassud, C., & Lahoussine-Turcaud, V. (1998). A new process to remove halogenated VOCs for drinking water production: vacuum membrane distillation. Desalination, 117, 233-245.

    Article  CAS  Google Scholar 

  • Cyna, B., Chagneau, G., Bablon, G., & Tanghe, N. (2002). Two years of nanofiltration at the Méry-sur-Oise plant, France. Desalination, 147, 69-75.

    Article  CAS  Google Scholar 

  • Davis, T. A., Volesky, B., & Mucci, A. (2003). A review of the biochemistry of heavy metal biosorption by brown algae. Water Research, 37, 4311-4330.

    Article  CAS  Google Scholar 

  • de Pinho, M. N., Semião, V., & Geraldes, V. (2002). Integrated modeling of transport processes in fluid/nanofiltration membrane systems. Journal of Membrane Science, 206, 189-200.

    Article  Google Scholar 

  • Devitt, E. C., Ducellier, P. C., Cote, P., & Wiesner, M. R. (1998). Effects of natural organic matter and the raw water matrix on the rejection of atrazine by pressure-driven membranes. Water Research, 32, 2563-2568.

    Article  CAS  Google Scholar 

  • Ducom, G., & Cabassud, C. (1999). Interests and limitations of nanofiltration for the removal of volatile organic compounds in drinking water production. Desalination, 124, 115-123.

    Article  CAS  Google Scholar 

  • Elimelech, M., Chen, W. H., & Waypa, J. J. (1994). Measuring the zeta (electrokinetic) potential of reverse osmosis membranes by a streaming potential analyzer. Desalination, 95, 269-286.

    Article  CAS  Google Scholar 

  • Escher, B. I., Pronk, W., Suter, M. J. F., & Maurer, M. (2006). Monitoring the removal efficiency of pharmaceuticals and hormones in different treatment processes of source-separated urine with bioassays. Environmental Science and Technology, 40, 5095-5101.

    Article  CAS  Google Scholar 

  • Fatin-Rouge, N., Dupont, A., Vidonne, A., Dejeu, J., Fievet, P., & Foissy, A. (2006). Removal of some divalent cations from water by membrane-filtration assisted with alginate. Water Research, 40, 1303-1309.

    Article  CAS  Google Scholar 

  • Favre-Reguillon, A., Lebuzit, G., Foos, J., Guy, A., Draye, M., & Lemaire, M. (2003). Selective concentration of uranium from seawater by nanofiltration. Industrial & Engineering Chemistry Research, 42, 5900-5904.

    Article  CAS  Google Scholar 

  • Favre-Reguillon, A., Lebuzit, G., Murat, D., Foos, J., Mansour, C., & Draye, M. (2008). Selective removal of dissolved uranium in drinking water by nanofiltration. Water Research, 42, 1160-1166.

    Article  CAS  Google Scholar 

  • Gaid, A., Bablon, G., Turner, G., Franchet, J., & Christophe Protais, J. (1998). Performance of 3 years operation of nanofiltration plants. Desalination, 117, 149-158.

    Article  CAS  Google Scholar 

  • Gallenkemper, M., Wintgens, T., & Melin, T. (2003). Nanofiltration of endocrine disrupting compounds. Water Science and Technology: Water Supply, 3, 321-327.

    CAS  Google Scholar 

  • Geraldes, V., Semiao, V., & Norberta de Pinho, M. (2002). The effect on mass transfer of momentum and concentration boundary layers at the entrance region of a slit with a nanofiltration membrane wall. Chemical Engineering Science, 57, 735-748.

    Article  CAS  Google Scholar 

  • Göbel, A., McArdell, C. S., Joss, A., Siegrist, H., & Giger, W. (2007). Fate of sulfonamides, macrolides, and trimethoprim in different wastewater treatment technologies. Science of the Total Environment, 372, 361-371.

    Article  CAS  Google Scholar 

  • Goss, K., & Schwarzenbach, P. (2003). Rules of thumb for assessing equilibrium partitioning of organic compounds: successes and pitfalls. Journal of Chemical Education, 80, 450-455.

    Article  CAS  Google Scholar 

  • Green, T. A., Roy, S., & Scott, K. (2001). Recovery of metal ions from spent solutions used to electrodeposit magnetic materials. Separation and Purification Technology, 22-23, 583-590.

    Article  Google Scholar 

  • Groundwater Replenishment System. (2004). Orange County’s historic water factory 21 stops producing highly purified water. Retrieved March 17, 2009, from http://www.gwrsystem.com/news/releases/040121.html.

  • Hansch, C., Leo, A., & Hoekman, D. (1995). Exploring QSAR: Hydrophobic, electronic, and steric constants. Washington, DC: American Chemical Society.

    Google Scholar 

  • Haslam, E. (1996). Natural polyphenols (vegetable tannins) as drugs: Possible modes of action. Journal of Natural Products, 59, 205-215.

    Article  CAS  Google Scholar 

  • Heberer, T. (2002). Tracking persistent pharmaceutical residues from municipal sewage to drinking water. Journal of Hydrology, 266, 175-189.

    Article  CAS  Google Scholar 

  • Heijman, S. G. J., Verleifde, A. R. D., Cornelissen, E. R., Amy, G., & van Dijk, J. C. (2007). Influence of natural organic matter (NOM) fouling on the removal of pharmaceuticals by nanofiltration and activated carbon filtration. Water Science and Technology: Water Supply, 7, 17-23.

    Article  CAS  Google Scholar 

  • Higuchi, A., Yoon, B.-O., Asano, T., Nakaegawa, K., Miki, S., Hara, M., et al. (2002). Separation of endocrine disruptors from aqueous solutions by pervaporation. Journal of Membrane Science, 198, 311-320.

    Article  CAS  Google Scholar 

  • Higuchi, A., Yoon, B. O., Kaneko, T., Hara, M., Maekawa, M., & Nohmi, T. (2004). Separation of endocrine disruptors from aqueous solutions by pervaporation: dioctylphthalate and butylated hydroxytoluene in mineral water. Journal of Applied Polymer Science, 94, 1737-1742.

    Article  CAS  Google Scholar 

  • Hu, J. Y., Chen, X., Tao, G., & Kekred, K. (2007a). Fate of endocrine disrupting compounds in membrane bioreactor systems. Environmental Science and Technology, 41, 4097-4102.

    Google Scholar 

  • Hu, J. Y., Jin, X., & Ong, S. L. (2007b). Rejection of estrone by nanofiltration: Influence of solution chemistry. Journal of Membrane Science, 302, 188-196.

    Google Scholar 

  • Jin, X., Hu, J., & Ong, S. L. (2007). Influence of dissolved organic matter on estrone removal by NF membranes and the role of their structures. Water Research, 41, 3077-3088.

    Article  CAS  Google Scholar 

  • Johnson, A. C., & Sumpter, J. P. (2001). Removal of endocrine-disrupting chemicals in activated sludge treatment works. Environmental Science and Technology, 35, 4697-4703.

    Article  CAS  Google Scholar 

  • Joss, A., Andersen, H., Ternes, T., Richle, P. R., & Siegrist, H. (2004). Removal of estrogens in municipal wastewater treatment under aerobic and anaerobic conditions: consequences for plant optimization. Environmental Science and Technology, 38, 3047-3055.

    Article  CAS  Google Scholar 

  • Joss, A., Keller, E., Alder, A. C., Göbel, A., McArdell, C. S., Ternes, T., et al. (2005). Removal of pharmaceuticals and fragrances in biological wastewater treatment. Water Research, 39, 3139-3152.

    Article  CAS  Google Scholar 

  • Joss, A., Zabczynski, S., Göbel, A., Hoffmann, B., Löffler, D., McArdell, C. S., et al. (2006). Biological degradation of pharmaceuticals in municipal wastewater treatment: Proposing a classification scheme. Water Research, 40, 1686-1696.

    Article  CAS  Google Scholar 

  • Khan, S. J., Wintgens, T., Sherman, P., Zaricky, J., & Schafer, A. I. (2004). Removal of hormones and pharmaceuticals in the advanced water recycling demonstration plant in Queensland, Australia. Water Science and Technology, 50, 15-22.

    CAS  Google Scholar 

  • Kim, S. D., Cho, J., Kim, I. S., Vanderford, B. J., & Snyder, S. A. (2007). Occurrence and removal of pharmaceuticals and endocrine disruptors in South Korean surface, drinking, and waste waters. Water Research, 41, 1013-1021.

    Article  CAS  Google Scholar 

  • Kimura, K., Amy, G., Drewes, J. E., Heberer, T., Kim, T.-U., & Watanabe, Y. (2003a). Rejection of organic micropollutants (disinfection by-products, endocrine disrupting compounds, and pharmaceutically active compounds) by NF/RO membranes. Journal of Membrane Science, 227, 113-121.

    Google Scholar 

  • Kimura, K., Amy, G., Drewes, J., & Watanabe, Y. (2003b). Adsorption of hydrophobic compounds onto NF/RO membranes: An artifact leading to overestimation of rejection. Journal of Membrane Science, 221, 89-101.

    Google Scholar 

  • Kimura, K., Toshima, S., Amy, G., & Watanabe, Y. (2004). Rejection of neutral endocrine disrupting compounds (EDCs) and pharmaceutical active compounds (PhACs) by RO membranes. Journal of Membrane Science, 245, 71-78.

    Article  CAS  Google Scholar 

  • Kiso, Y., Nishimura, Y., Kitao, T., & Nishimura, K. (2000). Rejection properties of non-phenylic pesticides with nanofiltration membranes. Journal of Membrane Science, 171, 229-237.

    Article  CAS  Google Scholar 

  • Kolpin, D. W., Furlong, E. T., Meyer, M. T., Thurman, E. M., Zaugg, S. D., Barber, L. B., et al. (2002). Pharmaceuticals, hormones, and other organic wastewater contaminants in U.S. streams, 1999-2000: A national reconnaissance. Environmental Science and Technology, 36, 1202-1211.

    Google Scholar 

  • Körner, W., Bolz, U., Süßmuth, W., Hiller, G., Schuller, W., Hanf, V., et al. (2000). Input/output balance of estrogenic active compounds in a major municipal sewage plant in Germany. Chemosphere, 40, 1131-1142.

    Article  Google Scholar 

  • Kosutic, K., Dolar, D., Asperger, D., & Kunst, B. (2007). Removal of antibiotics from a model wastewater by RO/NF membranes. Separation and Purification Technology, 53, 244-249.

    Article  CAS  Google Scholar 

  • Koyuncu, I., Arikan, O. A., Wiesner, M. R., & Rice, C. (2008). Removal of hormones and antibiotics by nanofiltration membranes. Journal of Membrane Science, 309, 94-101.

    Article  CAS  Google Scholar 

  • Kryvoruchko, A. P., Yurlova, L. Y., Atamanenko, I. D., & Kornilovich, B. Y. (2004). Ultrafiltration removal of U(VI) from contaminated water. Desalination, 162, 229-236.

    Article  CAS  Google Scholar 

  • Kubli-Garfias, C. (1998). Comparative study of the electronic structure of estradiol, epiestradiol and estrone by ab initio theory. Journal of Molecular Structure: THEOCHEM, 452, 175-183.

    Article  CAS  Google Scholar 

  • Kuster, M., López, J., de Alda, M., & Barceló, D. (2004). Analysis and distribution of estrogens and progestogens in sewage sludge, soils and sediments. Trends in Analytical Chemistry, 23, 790-798.

    Article  CAS  Google Scholar 

  • Kwon, J. H., Liljestrand, H., & Katz, L. E. (2006). Partitioning of moderately hydrophobic endocrine disruptors between water and synthetic membrane vesicles. Environmental Toxicology and Chemistry, 25, 1984-1992.

    Article  CAS  Google Scholar 

  • Lambert, J., Avila-Rodriguez, M., Durand, G., & Rakib, M. (2006). Separation of sodium ions from trivalent chromium by electrodialysis using monovalent cation selective membranes. Journal of Membrane Science, 280, 219-225.

    Article  CAS  Google Scholar 

  • Lyko, S., Wintgens, T., & Melin, T. (2005). Estrogenic trace contaminants in wastewater - possibilities of membrane bioreactor technology. Desalination, 178, 95-105.

    Article  CAS  Google Scholar 

  • Manem, J., & Sanderson, R. (1996). Membrane bioreactors. In J. Malleviale, P. E. Odendaal, & M. R. Wiesner (Eds.), Water treatment membrane processes (pp. 17.1-17.31). New York: McGraw-Hill.

    Google Scholar 

  • Marder, L., Bernardes, A. M., & Zoppas Ferreira, J. (2004). Cadmium electroplating wastewater treatment using a laboratory-scale electrodialysis system. Separation and Purification Technology, 37, 247-255.

    Article  CAS  Google Scholar 

  • Marder, L., Sulzbach, G. O., Bernardes, A. M., & Ferreira, J. Z. (2003). Removal of cadmium and cyanide from aqueous solutions through electrodialysis. Journal of the Brazilian Chemical Society, 14, 610-615.

    Article  CAS  Google Scholar 

  • McCallum, E. A., Hyung, H., Do, T. A., Huang, C.-H., & Kim, J.-H. (2008). Adsorption, desorption, and steady-state removal of 17β-estradiol by nanofiltration membranes. Journal of Membrane Science, 319, 38-43.

    Article  CAS  Google Scholar 

  • Melin, T., Jefferson, B., Bixio, D., Thoeye, C., De Wilde, W., De Koning, J., et al. (2006). Membrane bioreactor technology for wastewater treatment and reuse. Desalination, 187, 271-282.

    Article  CAS  Google Scholar 

  • Mitch, W. A., Gerecke, A. C., & Sedlak, D. L. (2003a). A N-Nitrosodimethylamine (NDMA) precursor analysis for chlorination of water and wastewater. Water Research, 37, 3733-3741.

    Google Scholar 

  • Mitch, W. A., Sharp, J. O., Trussel, R. R., Valentine, R. L., Alvarez-Cohen, L., & Sedlak, D. L. (2003b). N-Nitrosodimethylamine (NDMA) as a drinking water contaminant: A review. Environmental Engineering Science, 20, 389-404.

    Google Scholar 

  • Mulder, M. (1996). Basic principles of membrane technology. Dordrecht: Kluwer.

    Google Scholar 

  • Neale, P. A., Escher, B. I., & Schäfer, A. I. (2008). Quantification of solute-solute interactions using negligible-depletion solid-phase microextraction: Measuring the affinity of estradiol to bulk organic matter. Environmental Science and Technology, 42, 2886-2892.

    Article  CAS  Google Scholar 

  • Neale, P.A., Pronk, W., Schäfer A.I (2009) Influence of pH on losses of analyte estradiol in sample prefiltration. Environmental Engineering Science 26, 1157-1161.

    Google Scholar 

  • Ng, H. Y., & Elimelech, M. (2004). Influence of colloidal fouling on rejection of trace organic contaminants by reverse osmosis. Journal of Membrane Science, 244, 215.

    Article  CAS  Google Scholar 

  • Nghiem, L. D. (2005). Removal of emerging trace organic contaminants by nanofiltration and reverse osmosis. Ph.D. thesis, University of Wollongong, New South Wales, Australia.

    Google Scholar 

  • Nghiem, L. D., & Coleman, P. J. (2008). NF/RO filtration of the hydrophobic ionogenic compound triclosan: Transport mechanisms and the influence of membrane fouling. Separation and Purification Technology, 62, 709-716.

    Article  CAS  Google Scholar 

  • Nghiem, L. D., & Hawkes, S. (2007). Effects of membrane fouling on the nanofiltration of pharmaceutically active compounds (PhACs): Mechanisms and role of membrane pore size. Separation and Purification Technology, 57, 176-184.

    Article  CAS  Google Scholar 

  • Nghiem, L. D., Manis, A., Soldenhoff, K., & Schäfer, A. I. (2004). Estrogenic hormone removal from wastewater using NF/RO membranes. Journal of Membrane Science, 242, 37-45.

    Article  CAS  Google Scholar 

  • Nghiem, L. D., & Schäfer, A. I. (2006). Critical risk points of nanofiltration and reverse osmosis processes in water recycling applications. Desalination, 187, 303-312.

    Article  CAS  Google Scholar 

  • Nghiem, L. D., Schäfer, A. I. & Elimelech, M. (2005a). Nanofiltration of hormone mimicking trace organic contaminants. Separation Science and Technology, 40, 2633-2649.

    Google Scholar 

  • Nghiem, L. D., Schäfer, A. I., & Elimelech, M. (2005b). Pharmaceutical retention mechanisms by nanofiltration membranes. Environmental Science and Technology, 39, 7698-7705.

    Google Scholar 

  • Nghiem, L. D., Schäfer, A. I., & Elimelech, M. (2006). Role of electrostatic interactions in the retention of pharmaceutically active contaminants by a loose nanofiltration membrane. Journal of Membrane Science, 286, 52-59.

    Article  CAS  Google Scholar 

  • Nghiem, L. D., Schäfer, A. I., & Waite, T. D. (2002). Adsorption of estrone on nanofiltration and reverse osmosis membranes in water and wastewater treatment. Water Science and Technology, 46, 265-272.

    CAS  Google Scholar 

  • Nghiem, L. D., Vogel, D., & Khan, S. (2008). Characterising humic acid fouling of nanofiltration membranes using bisphenol A as a molecular indicator. Water Research, 42, 4049-4058.

    Article  CAS  Google Scholar 

  • Nguyen, T. Q., & Nobe, K. (1987). Extraction of organic contaminants in aqueous solutions by pervaporation. Journal of Membrane Science, 30, 11-22.

    Article  CAS  Google Scholar 

  • Oh, J. I., Urase, T., Kitawaki, H., Rahman, M. M., Rahman, M. H., & Yamamoto, K. (2000). Modeling of arsenic rejection considering affinity and steric hindrance effect in nanofiltration membranes. Water Science and Technology, 42, 173-180.

    CAS  Google Scholar 

  • Orange County Water District. (2007). OCWD set to build advanced water quality assurance laboratory. Retrieved March 17, 2009, from http://www.ocwd.com/fv-98.aspx.

  • Orange County Water District - Groundwater Authority. (2002). Orange County Water District takes a proactive stance on contaminants of concern. Retrieved March 17, 2009, from http://www.ocwd.com/_html/_pr/_pr02/pr02_0129_dioxane.htm.

  • Piccolo, A. (1994). Interactions between organic pollutants and humic substances in the environment. In N. Senesi & T. M. Miano (Eds.), Humic substances in the global environment and implications on human health (pp. 961-979). Amsterdam: Elsevier.

    Google Scholar 

  • Plakas, K. V., Karabelas, A. J., Wintgens, T., & Melin, T. (2006). A study of selected herbicides retention by nanofiltration membranes - the role of organic fouling. Journal of Membrane Science, 284, 291-300.

    Article  CAS  Google Scholar 

  • Plumlee, M. H., López-Mesas, M., Heidlberger, A., Ishida, K. P., & Reinhard, M. (2008). N-nitrosodimethylamine (NDMA) removal by reverse osmosis and UV treatment and analysis via LC-MS/MS. Water Research, 42, 347-355.

    Article  CAS  Google Scholar 

  • Pronk, W., Biebow, M., & Boller, M. (2006a). Electrodialysis for recovering salts from a urine solution containing micropollutants. Environmental Science and Technology, 40, 2414-2420.

    Google Scholar 

  • Pronk, W., Palmquist, H., Biebow, M., & Boller, M. (2006b). Nanofiltration for the separation of pharmaceuticals from nutrients in source-separated urine. Water Research, 40, 1405-1412.

    Google Scholar 

  • Pronk, W., Zuleeg, S., Lienert, J., Escher, B. I., Koller, M., Berner, A., et al. (2007). Pilot experiments with electrodialysis and ozonation for the production of a fertiliser from urine. Water Science and Technology, 56, 219-227.

    Article  CAS  Google Scholar 

  • Rabiet, M., Togola, A., Brissaud, F., Seidel, J.-L., Budzinski, H., & Elbaz-Poulichet, F. (2006). Consequences of treated water recycling as regards pharmaceuticals and drugs in surface and ground waters of a medium-sized mediterranean catchment. Environmental Science and Technology, 40, 5282-5288.

    Article  CAS  Google Scholar 

  • Radjenovic, J., Petrovic, M., & Barcelo, D. (2007). Analysis of pharmaceuticals in wastewater and removal using a membrane bioreactor. Analytical and Bioanalytical Chemistry, 387, 1365-1377.

    Article  CAS  Google Scholar 

  • Radjenovic, J., Petrovic, M., Ventura, F., & Barceló, D. (2008). Rejection of pharmaceuticals in nanofiltration and reverse osmosis membrane drinking water treatment. Water Research, 42, 3601-3610.

    Article  CAS  Google Scholar 

  • Raff, O., & Wilken, R.-D. (1999). Removal of dissolved uranium by nanofiltration. Desalination, 122, 147-150.

    Article  CAS  Google Scholar 

  • Rosa, M. J., & de Pinho, M. N. (1995). The role of ultrafiltration and nanofiltration on the minimisation of the environmental impact of bleached pulp effluents. Journal of Membrane Science, 102, 155-161.

    Article  CAS  Google Scholar 

  • Safe, S. H. (2000). Endocrine disruptors and human health: is there a problem? An update. Environmental Health Perspectives, 108, 487-493.

    Article  CAS  Google Scholar 

  • Sanli, O., & Asman, G. (2000). Removal of Fe (III) ions from dilute aqueous solutions by alginic acid-enhanced ultrafiltration. Journal of Applied Polymer Science, 77, 1096-1101.

    Article  CAS  Google Scholar 

  • Schäfer, A. I. (2001). Natural organic matter removal using membranes: Principles, performance and cost. Boca Raton, FL: CRC Press.

    Google Scholar 

  • Schäfer, A. I., Fane, A. G., & Waite, T. D. (Eds.) (2005). Nanofiltration: Principles and applications.Oxford: Elsevier.

    Google Scholar 

  • Schäfer, A. I., Mastrup, M., & Jensen, R. L. (2002). Particle interactions and removal of trace contaminants from water and wastewaters. Desalination, 147, 243-250.

    Article  Google Scholar 

  • Schäfer, A. I., Nghiem, L. D., & Oschmann, N. (2006). Bisphenol A retention in the direct ultrafiltration of greywater. Journal of Membrane Science, 283, 233-243.

    Article  CAS  Google Scholar 

  • Schäfer, A. I., Nghiem, L. D., & Waite, T. D. (2003). Removal of the natural hormone estrone from aqueous solutions using nanofiltration and reverse osmosis. Environmental Science and Technology, 37, 182-188.

    Article  CAS  Google Scholar 

  • Schultz, M. M., & Furlong, E. T. (2008). Trace analysis of antidepressant pharmaceuticals and their select degradates in aquatic matrixes by LC/ESI/MS/MS. Analytical Chemistry, 80, 1756-1762.

    Article  CAS  Google Scholar 

  • Seah, H., Poon, J., Leslie, G., & Law, I. B. (2003). Singapore’s NEWater demonstration project - another milestone in indirect potable reuse. Water, 43-46.

    Google Scholar 

  • Seidel, A., Waypa, J. J., & Elimelech, M. (2001). Role of charge (Donnan) exclusion in removal of arsenic from water by a negatively charged porous nanofiltration membrane. Environmental Engineering Science, 18, 105-113.

    Article  CAS  Google Scholar 

  • Sindicat des Eaux d’Ile de France. (2007a). Bilan de la qualité des eaux brutes, produites et distribuées en 2007. Retrieved March 17, 2009, from http://www.sedif.com/le_sedif/iso_album/bilan_qualite_des_eaux_2007.pdf.

  • Sindicat des Eaux d’Ile de France. (2007b). Rapport annuel. Retrieved March 17, 2009, from http://www.sedif.com/le_sedif/iso_album/sedif_rap_annuel_2007.pdf.

  • Singapore Public Utilities Board. (2002). Singapore water reclamation study - expert panel review and findings. Retrieved March 17, 2009, from http://www.pub.gov.sg/newater/AboutNEWater/Documents/review.pdf.

  • Strathmann, H. (2004). Ion exchange membrane separation processes. Amsterdam: Elsevier.

    Google Scholar 

  • Teng, Z., Yuan Huang, J., Fujita, K., & Takizawa, S. (2001). Manganese removal by hollow fiber micro-filter. Membrane separation for drinking water. Desalination, 139, 411-418.

    Article  CAS  Google Scholar 

  • Ternes, T. A. & Joss, A. (Eds.) (2006). Human pharmaceuticals, hormones and fragrances: the challenge of micropollutants in urban water management. London: IWA.

    Google Scholar 

  • Tortajada, C. (2006). Water management in Singapore. Water Resources Development, 22, 227-240.

    Article  Google Scholar 

  • Turek, M., Dydo, P., Trojanowska, J., & Bandura, B. (2007). Electrodialytic treatment of boron-containing wastewater. Desalination, 205, 185-191.

    Article  CAS  Google Scholar 

  • Tyler, C. R., Jobling, S., & Sumpter, J. P. (1998). Endocrine disruption in wildlife: A critical review of the evidence. Critical Reviews in Toxicology, 28, 319-361.

    Article  CAS  Google Scholar 

  • Uludag, Y., Özbelge, H. Ö., & Yilmaz, L. (1997). Removal of mercury from aqueous solutions via polymer-enhanced ultrafiltration. Journal of Membrane Science, 129, 93-99.

    Article  CAS  Google Scholar 

  • Urkiaga, A., Bolaño, N., & De Las Fuentes, L. (2002). Removal of micropollutants in aqueous streams by organophilic pervaporation. Desalination, 149, 55-60.

    Article  CAS  Google Scholar 

  • Van der Bruggen, B., Milis, R., Vandecasteele, C., Bielen, P., Van San, E., & Huysman, K. (2003). Electrodialysis and nanofiltration of surface water for subsequent use as infiltration water. Water Research, 37, 3867-3874.

    Article  CAS  Google Scholar 

  • Van der Bruggen, B., Schaep, J., Maes, W., Wilms, D., & Vandecasteele, C. (1998). Nanofiltration as a treatment method for the removal of pesticides from groundwaters. Desalination, 117, 139-147.

    Article  Google Scholar 

  • Van der Bruggen, B., Schaep, J., Wilms, D., & Vandecasteele, C. (1999). Influence of molecular size, polarity and charge on the retention of organic molecules by nanofiltration. Journal of Membrane Science, 156, 29-41.

    Article  Google Scholar 

  • Ventresque, C., Gisclon, V., Bablon, G., & Chagneau, G. (2000). An outstanding feat of modern technology: The Méry-sur-Oise nanofiltration Treatment plant (340,000 m3/d). Desalination, 131, 1-16.

    Article  CAS  Google Scholar 

  • Weber, S., Gallenkemper, M., Melin, T., Dott, W., & Hollender, J. (2004). Efficiency of nanofiltration for the elimination of steroids from water. Water Science and Technology, 50, 9-14.

    CAS  Google Scholar 

  • Weston, D. P., You, J., & Lydy, M. J. (2004). Distribution and toxicity of sediment-associated pesticides in agriculture-dominated water bodies of California’s Central Valley. Environmental Science and Technology, 38, 2752-2759.

    Article  CAS  Google Scholar 

  • Wilf, M., Hydranautics, a Nitto Denko Corporation. (1998). Advanced membrane technology for water reclamation. Retrieved March 17, 2009, from http://www.membranes.com/docs/papers/18_watertech.pdf.

  • Williams, M. E., Hestekin, J. A., Smothers, C. N., & Bhattacharyya, D. (1999). Separation of organic pollutants by reverse osmosis and nanofiltration membranes: Mathematical models and experimental verification. Industrial & Engineering Chemistry Research, 38, 3683-3695.

    Article  CAS  Google Scholar 

  • Williams, R. J., Johnson, A. C., Smith, J. J. L., & Kanda, R. (2003). Steroid estrogens profiles along river stretches arising from sewage treatment works discharges. Environmental Science and Technology, 37, 1744-1750.

    Article  CAS  Google Scholar 

  • Wu, Y., Kong, Y., Liu, J., Zhang, J., & Xu, J. (1991). An experimental study on membrane distillation-crystallization for treating waste water in taurine production. Desalination, 80, 235-242.

    Article  CAS  Google Scholar 

  • Xu, P., Drewes, J. E., Bellona, C., Amy, G., Kim, T.-U., Adam, M., et al. (2005). Rejection of emerging organic micropollutants in nanofiltration-reverse osmosis membrane applications. Water Environment Research, 77, 40-48.

    Article  CAS  Google Scholar 

  • Xu, P., Drewes, J. E., Kim, T.-U., Bellona, C., & Amy, G. (2006). Effect of membrane fouling on transport of organic contaminants in NF/RO membrane applications. Journal of Membrane Science, 279, 165-175.

    Article  CAS  Google Scholar 

  • Yoon, Y., Westerhoff, P., Snyder, S. A., & Wert, E. C. (2006). Nanofiltration and ultrafiltration of endocrine disrupting compounds, pharmaceuticals and personal care products. Journal of Membrane Science, 270, 88-100.

    Article  CAS  Google Scholar 

  • Yoon, Y., Westerhoff, P., Snyder, S. A., Wert, E. C., & Yoon, J. (2007). Removal of endocrine disrupting compounds and pharmaceuticals by nanofiltration and ultrafiltration membranes. Desalination, 202, 16-23.

    Article  CAS  Google Scholar 

  • Yoon, Y., Westerhoff, P., Yoon, J., & Snyder, S. A. (2004). Removal of 17β−estradiol and fluoranthene by nanofiltration and ultrafiltration. Journal of Environmental Engineering, 130, 1460-1467.

    Article  CAS  Google Scholar 

  • Younes, M. (1999). Specific issues in health risk assessment of endocrine disrupting chemicals and international activities. Chemosphere, 39, 1253-1257.

    Article  CAS  Google Scholar 

  • Yuan, W., & Zydney, A. L. (2000). Humic acid fouling during ultrafiltration. Environmental Science and Technology, 34, 5043-5050.

    Article  CAS  Google Scholar 

  • Zhang, Y., Causserand, C., Aimar, P., & Cravedi, J. P. (2006). Removal of bisphenol A by a nanofiltration membrane in view of drinking water production. Water Research, 40, 3793-3799.

    Article  CAS  Google Scholar 

  • Zolotarev, P. P., Ugrozov, V. V., Volkina, I. B., & Nikulin, V. M. (1994). Treatment of waste water for removing heavy metals by membrane distillation. Journal of Hazardous Materials, 37, 77-82.

    Article  CAS  Google Scholar 

  • Zuccato, E., Calamari, D., Natangelo, M., & Fanelli, R. (2000). Presence of therapeutic drugs in the environment. The Lancet, 355, 1789-1790.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea J. C. Semião .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Semião, A.J.C., Schäfer, A.I. (2010). Xenobiotics Removal by Membrane Technology: An Overview. In: Fatta-Kassinos, D., Bester, K., Kümmerer, K. (eds) Xenobiotics in the Urban Water Cycle. Environmental Pollution, vol 16. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3509-7_17

Download citation

Publish with us

Policies and ethics