Skip to main content

Pharmaceutical Contaminants in Urban Water Cycles: A Discussion of Novel Concepts for Environmental Risk Assessment

  • Chapter
  • First Online:
Book cover Xenobiotics in the Urban Water Cycle

Part of the book series: Environmental Pollution ((EPOL,volume 16))

Abstract

Urban water cycles are threatened in many ways by human activities, including the discharge of chemicals by industrial and household effluents. Since more than a decade it has been recognised that the active ingredients of human pharmaceuticals contribute to the chemical contamination of urban surface waters and may pose a serious risk to the environment. Pharmaceuticals reach the aquatic environment due to their everyday use, excretion by humans and incomplete degradation in sewage treatment works. Their environmental concentrations are generally low. Due to their biologic activity, however, pharmaceuticals are considered as candidate compounds for low-level and chronic effects. Indeed, some pharmaceuticals, such as compounds interfering with reproductive hormones, provoke long-term effects on aquatic vertebrates in the ng/L range. Therefore, appropriate regulations for the environmental risk assessment as part of the approval of new medicines have been established. It was criticised, however, that these guidelines would not have been able to detect or predict the effects of some compounds with already known environmental impact. Thus, approaches for amending existing guidelines have been suggested. In this review, we give a brief overview on current and novel approaches for the prospective environmental risk assessment of human pharmaceuticals in the aquatic environment. In particular, we compare different strategies to identify potential ecotoxic effects and the possible applications within a regulatory framework. We indicate a number of tools that could improve the detection of compounds with potential low-level effects or hitherto unknown but relevant alternative mode of actions with implications for long-term effects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahlers, J., Riedhammer, C., Vogliano, M., Ebert, R.-U., Kuhne, R., & Schuurmann, G. (2006). Acute to chronic ratios in aquatic toxicity-variation across trophic levels and relationship with chemical structure. Environmental Toxicology and Chemistry, 25, 2937-2945.

    Article  CAS  Google Scholar 

  • Alder, A. C., Bruchet, A., Carballa, M., Clara, M., Joss, A., Löffler, D., et al. (2006). Consumption and occurence. In: T. Ternes (Ed.), Human pharmaceuticals, hormones and fragrances: The challenge of micropollutants in urban water management (pp. 15-54). London: IWA Publishing.

    Google Scholar 

  • Ankley, G., Black, M., Garric, J., Hutchinson, T., & Iguchi, T. (Eds.) (2005). A framework for assessing the hazard of pharmaceutical materials to aquatic species. In R. T. Williams (Ed.), Human pharmaceuticals: Assessing the impacts on aquatic ecosystems (pp. 183-238). Pensacola: SETAC.

    Google Scholar 

  • Ankley, G. T., Daston, G. P., Degitz, S. J., Denslow, N. D., Hoke, R. A., Kennedy, S. W., et al. (2006). Toxicogenomics in regulatory ecotoxicology. Environmental Science and Technology, 40, 4055-4065.

    Article  CAS  Google Scholar 

  • Bartels, P., & von Tümpling, J. W. (2007). Solar radiation influence on the decomposition process of diclofenac in surface waters. The Science of the Total Environment, 374, 143-155.

    Article  CAS  Google Scholar 

  • Bound, J. P., & Voulvoulis, N. (2004). Pharmaceuticals in the aquatic environment - a comparison of risk assessment strategies. Chemosphere, 56, 1143-1155.

    Article  CAS  Google Scholar 

  • Cunningham, V., Buzby, M., Hutchinson, T., Mastrocco, F., Parke, N., & Roden, N. (2006). Effects of human pharmaceuticals on aquatic life: Next steps. Environmental Science and Technology, 40, 3456-3462.

    Article  CAS  Google Scholar 

  • Daughton, C. G., & Ternes, T. A. (1999). Pharmaceuticals and personal care products in the environment: Agents of subtle change? Environmental Health Perspectives, 107(Suppl 6), 907-938.

    Article  CAS  Google Scholar 

  • Ellis, J. B. (2006). Pharmaceutical and personal care products (PPCPs) in urban receiving waters. Environmental Pollution, 144, 184-189.

    Article  CAS  Google Scholar 

  • EMEA. (2007). Overview of comments received on guideline on environmental impact assessment for veterinary medicinal products (in support of the VICH guidelines GL6 and GL38). EMEA/CVMP/346335/2006.

    Google Scholar 

  • EMEA/CHMP. (2006). Guideline on the environmental risk assessment of medicinal products for human use. EMEA/CHMP/SWP/4447/00. From http://www.emea.europa.eu1.

  • EPA. (2003). Draft detailed review paper on a fish two-generation toxicity test. EPA contract number 68-W-01-023 work assignment 2-13 (Prepared under WA 3-5, Task 3). From http://www.oecd.org/dataoecd/13/4/2497858.pdf.

  • Escher, B. I., Bramaz, N., Eggen, R. I. L., & Richter, M. (2005). In vitro assessment of modes of toxic action of pharmaceuticals in aquatic life. Environmental Science and Technology, 39, 3090-3100.

    Article  CAS  Google Scholar 

  • Escher, B. I., Bramaz, N., Richter, M., & Lienert, J. (2006). Comparative ecotoxicological hazard assessment of beta-blockers and their human metabolites using a mode-of-action-based test battery and a QSAR approach. Environmental Science and Technololgy, 40, 7402-7408.

    Article  CAS  Google Scholar 

  • FDA. (1998). Guidance for industry - environmental assessment of human drug and biologics applications. US Department of Health and Human Services, Food and Drug Administration, CMC6, revision 1. From http://www.fda.gov/cder/guidance/index.htm.

  • Fent, K. (2008). Effects of pharmaceuticals on aquatic organisms. In K. Kümmer (Ed.), Pharmaceuticals in the environment - sources, fate, effects and risks (pp. 175-203). Berlin: Springer.

    Google Scholar 

  • Fleming, A. (2007). Zebrafish as an alternative model organism for disease modelling and drug discovery: Implications for the 3Rs. NC3Rs (National Centre for the Replacement, Refinement and Reduction of Animals in research), 10, 1-7. From http://www.nc3rs.org.uk1.

  • Garric, J., Vollat, B., Duis, K., Péry, A., Junker, T., Ramil, M., et al. (2007). Effects of the parasiticide ivermectin on the cladoceran Daphnia magna and the green alga Pseudokirchneriella subcapitata. Chemosphere, 69, 903-910.

    Article  CAS  Google Scholar 

  • Gunnarsson, L., Jauhiainen, A., Kristiansson, E., Nerman, O., & Larsson, D. G. J. (2008). Evolutionary conservation of human drug targets in organisms used for environmental risk assessments. Environmental Science and Technology, 42, 5807-5813.

    Article  CAS  Google Scholar 

  • Heberer, T. (2002a). Occurrence, fate, and removal of pharmaceutical residues in the aquatic environment: A review of recent research data. Toxicology Letters, 131, 5-17.

    Article  CAS  Google Scholar 

  • Heberer, T. (2002b). Tracking persistent pharmaceutical residues from municipal sewage to drinking water. Journal of Hydrology, 266, 175-189.

    Article  CAS  Google Scholar 

  • Heckmann, L., Sibly, R., Connon, R., Hooper, H., Hutchinson, T., Maund, S., et al. (2008). Systems biology meets stress ecology: Linking molecular and organismal stress responses in Daphnia magna. Genome Biology, 9, R40.

    Article  Google Scholar 

  • Hoeger, B., Köllner, B., Dietrich, D. R., & Hitzfeld, B. (2005). Water-borne diclofenac affects kidney and gill integrity and selected immune parameters in brown trout (Salmo trutta f. fario). Aquatic Toxicology, 75, 53-64.

    Google Scholar 

  • Huggett, D., Benson, W., Chipman, K., Cook, J., Gray, L., Kinter, L., et al. (2005). Role of mammalian data in determining pharmaceutical responses in aquatic species. In: R. T. Williams (Ed.), Human pharmaceuticals assessing the impacts on aquatic ecosystems (pp. 149-181). Pensacola: SETAC.

    Google Scholar 

  • Huggett, D. B., Cook, J. C., Ericson, J. F., & Williams, R. T. (2003). A theoretical model for utilizing mammalian pharmacology and safety data to prioritize potential impacts of human pharmaceuticals to fish. Human and Ecological Risk Assessment, 9, 1789-1799.

    Article  CAS  Google Scholar 

  • Hutchinson, T. H., Ankley, G. T., Segner, H., & Tyler, C. R. (2006). Screening and testing for endocrine disruption in fish-biomarkers as “signposts,” not “traffic lights,” in risk assessment. Environmental Health Perspectives, 114(Suppl 1), 106-114.

    Google Scholar 

  • Jones, O. A. H., Voulvoulis, N., & Lester, J. N. (2002). Aquatic environmental assessment of the top 25 English prescription pharmaceuticals. Water Research, 36, 5013-5022.

    Article  CAS  Google Scholar 

  • Kidd, K. A., Blanchfield, P. J., Mills, K. H., Palace, V. P., Evans, R. E., Lazorchak, J. M., et al. (2007). Collapse of a fish population after exposure to a synthetic estrogen. Proceedings of the National Academy of Sciences of the United States of America, 104, 8897-8901.

    Article  CAS  Google Scholar 

  • Knacker, T., Liebig, M., & Moltmann, J. F. (2006). Environmental risk assessment. In T. Ternes & A. Joss (Eds.), Human pharmaceuticals, hormones and fragrances - the challenge of micropollutants in urban water management (pp. 121-148). London: IWA Publishing.

    Google Scholar 

  • Koschorreck, J., & Apel, P. (2006). A brief overview on the legal background and the regulatory instruments of the environmental risk assessment for pharmaceuticals in the EU, USA, Japan, Australia and Canada. In T. Ternes & A. Joss (Eds.), Human pharmaceuticals, hormones and fragrances: The challenge of micropollutants in urban water management (pp. 107-120). London: IWA Publishing.

    Google Scholar 

  • Lange, R., & Dietrich, D. (2002). Environmental risk assessment of pharmaceutical drug substances - conceptual considerations. Toxicology Letters, 131, 97-104.

    Article  CAS  Google Scholar 

  • Oaks, J. L., Gilbert, M., Virani, M. Z., Watson, R. T., Meteyer, C. U., Rideout, B. A., et al. (2004). Diclofenac residues as the cause of vulture population decline in Pakistan. Nature, 427, 630-633.

    Article  CAS  Google Scholar 

  • OECD 201. (1984). OECD guideline for testing of chemical: Alga, growth inhibition test. From http://www.oecd.org/dataoecd/.

  • OECD 211. (1998). OECD guidelines for testing of chemicals: Daphnia magna reproduction test. From http://www.oecd.org/dataoecd/.

  • OECD. (2006). Report of the validation of the 21-day fish screening assay for the detection of endocrine substances (phase 1b), series on testing and assessment, Number 61, ENV/JM/MONO(2006)29. From http://www.oecd.org/dataoecd/.

  • OECD. (2007). Guidance document on the validation of (quantitative) structure-activity relationships [(Q)SAR] models. ENV/JM/MONO(2007)2. From http://www.oecd.org/dataoecd/.

  • OECD 210. (1992). OECD guideline for testing of chemicals. Test No. 210: Fish, early life stage toxicity test. From http://www.oecd.org/dataoecd/.

  • Owen, S. F., Giltrow, E., Huggett, D. B., Hutchinson, T. H., Saye, J., Winter, M. J., et al. (2007). Comparative physiology, pharmacology and toxicology of β-blockers: Mammals versus fish. Aquatic Toxicology, 82, 145-162.

    Article  CAS  Google Scholar 

  • Reinstorf, F., Strauch, G., Schirmer, K., Glaser, H. R., Moder, M., Wennrich, R., et al. (2008). Mass fluxes and spatial trends of xenobiotics in the waters of the city of Halle, Germany. Environmental Pollution, 152, 452-460.

    Article  CAS  Google Scholar 

  • Sanderson, H., Johnson, D. J., Wilson, C. J., Brain, R. A., & Solomon, K. R. (2003). Probabilistic hazard assessment of environmentally occurring pharmaceuticals toxicity to fish, daphnids and algae by ECOSAR screening. Toxicology Letters, 144, 383-395.

    Article  CAS  Google Scholar 

  • Sanderson, H., & Thomsen, M. (2007). Ecotoxicological quantitative structure-activity relationships for pharmaceuticals. Bulletin of Environmental Contamination and Toxicology, 79, 331-335.

    Article  CAS  Google Scholar 

  • Schirmer, M., Reinstorf, F., Leschik, S., Musolff, A., Krieg, R., Osenbrück, S., Martienssen, Schirmer, K. & Strauch, G. (2009). Transport and Fate of Xenobiotics in the Urban Water Cycle: Studies in Halle/Saale and Leipzig (Germany). In: Xenobiotics in the Urban Water Cycle: Mass Flows, Environmental Processes and Mitigation Strategies (Kassinos, F. et al., eds.), Springer.

    Article  CAS  Google Scholar 

  • Scholz, S., Fischer, S., Gündel, U., Küster, E., Luckenbach, T., & Voelker, D. (2008). The zebrafish embryo model in environmental risk assessment - applications beyond acute toxicity testing. Environmental Science and Pollution Research, 15, 394-404.

    Article  CAS  Google Scholar 

  • Scholz, S., & Mayer, I. (2008). Molecular biomarkers of endocrine disruption in small model fish. Molecular and Cellular Endocrinology, 293, 57-70.

    Article  CAS  Google Scholar 

  • Schwaiger, J., Ferling, H., Mallow, U., Negele, R. D., & Wintermayr, H. (2004). Toxic effects of the non-steroidal anti-inflammatory drug diclofenac. Part I: Histopathological alterations and bioaccumulation in rainbow trout. Aquatic Toxicology, 68, 141-150.

    Article  CAS  Google Scholar 

  • Seiler, J. P. (2002). Pharmacodynamic activity of drugs and ecotoxicology - can the two be connected? Toxicology Letters, 131, 105-115.

    Google Scholar 

  • Strauch, G., Möder, M., Wennrich, R., Osenbrück, K., Gläser, H.-R., Schladitz, T., et al. (2008). Indicators for assessing anthropogenic impact on urban surface and groundwater. Journal of Soil and Sediments, 8, 23-33.

    Article  CAS  Google Scholar 

  • Sumpter, J. P. (2007). Environmental effects of human pharmaceuticals. Drug Information Journal, 41, 143-147.

    Google Scholar 

  • Ternes, T. A., Joss, A., & Sigriest, H. (2004). Scrutinizing pharmaceuticals and personal care products in wastewater treatment. Environmental Science and Technology, 38, 338A-352A.

    Article  Google Scholar 

  • Tyler, C. R., Jobling, S., & Sumpter, J. P. (1998). Endocrine disruption in wildlife: A critical review of the evidence. Critical Reviews in Toxicology, 28, 319-361.

    Article  CAS  Google Scholar 

  • USEPA. (2007). Validation of the fish short-term reproduction assay: Integrated summary report. U.S. Environmental Protection Agency, Endocrine Disruptor Screening Program. From http:// www.epa.gov/EPA-PEST/2007.

  • van der Jagt, K., Munn, S., Torslov, J., & de Bruijn, J. (2004). Alternative approaches can reduce the use of test animals under REACH. Addenddum to the report: Assessment of additional testing needs under REACH - Effects of (Q)SARS, risk based testing and voluntary industry initiatives. Commission of the European Union. EUR 21405 EN. From http://ecb.jrc.ec.europa.eu/documents/REACH/PUBLICATIONS.

  • van der Ven, K., Keil, D., Moens, L. N., Van Leemput, K., Van Remortelt, P., & De Coen, W. M. (2006). Neuropharmaceuticals in the environment: Mianserin-induced neuroendocrine disruption in zebrafish (Danio rerio) using cDNA microarrays. Environmental Toxicology and Chemistry, 25, 2645-2652.

    Article  Google Scholar 

  • Vedani, A., Spreafico, M., Peristera, O., Dobler, M., & Smiesko, M. (2008). VirtualToxLab - in silico prediction of the endocrine-disrupting potential of drugs and chemicals. Chimia, 62, 322-328.

    Article  CAS  Google Scholar 

  • Weil, M., Sacher, F., Scholz, S., Zimmer, M., Nagel, R., & Duis, K. (2009). Gene expression analysis in zebrafish embryos - a potential approach to predict effect concentrations in the fish early life stage test. Environmental Toxicology and Chemistry 28, 1970-1978.

    Google Scholar 

  • Yang, L., Kemadjou, J., Zinsmeister, C., Bauer, M., Legradi, J., Müller, F., et al. (2007). Transcriptional profiling reveals barcode-like toxicogenomic responses in the zebrafish embryo. Genome Biology, 8, R227.

    Article  Google Scholar 

  • Zwiener, C., Glauner, T., & Frimmel, F. H. (2000). Biodegradation of pharmaceutical residues investigated by SPE- GC/ITD-MS and on-line derivatization. Hrc-Journal of High Resolution and Chromatography, 23, 474-478.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge the support by the Helmholtz Centre for Environmental Research - UFZ for the integrated project “Risks of micro-pollutants in water and soil in the urban environment - biologic effects of new emerging compounds”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Scholz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Scholz, S., Schirmer, K., Altenburger, R. (2010). Pharmaceutical Contaminants in Urban Water Cycles: A Discussion of Novel Concepts for Environmental Risk Assessment. In: Fatta-Kassinos, D., Bester, K., Kümmerer, K. (eds) Xenobiotics in the Urban Water Cycle. Environmental Pollution, vol 16. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3509-7_13

Download citation

Publish with us

Policies and ethics