Skip to main content

Perspectives Gained from a Combination of Polar, Cluster and ISEE Energetic Particle Measurements in the Dayside Cusp

  • Conference paper
  • First Online:
The Cluster Active Archive

Part of the book series: Astrophysics and Space Science Proceedings ((ASSSP))

Abstract

Energetic particles are a consistent and common feature of the high-altitude dayside cusp. Observing these particles in a region where they cannot be stably trapped is one of the most striking findings of the Polar and Cluster satellites. The source of these cusp energetic particles (CEP) has centered on the possible role of the bow shock, leakage from the magnetosphere, and local acceleration within the cusp itself. The Polar satellite has documented that the shocked solar wind plasma enters the weak geomagnetic field of the polar region and produces cusp diamagnetic cavities (CDC) of apparent tremendous size ( ∼6 RE) well within the traditional magnetosphere. Within these cavities the local magnetic field is depressed and very turbulent. The intensities of the energetic ions are observed to increase by many orders of the magnitudes during the CDC encounters. The four Cluster spacecraft have typically not observed such a large cusp and extended diamagnetic cavity. The search for evidence to resolve this inconsistency led to a revisiting of ISEE 1 and 2 satellite measurements during two encounters with the high altitude cusp. In each of these cases the very good energy and angular resolution of the ISEE energetic particle experiment revealed that energetic ions within the cusp located at GSM Z ranging from 4 RE to 5 RE appeared from closer to the Earth and streamed outward in very close association with the diamagnetic cavities in the measured magnetic field. The electrons demonstrated a peaked at 90° pitch angle distribution indicative of being confined within a cusp minimum field trap. In one of these cases the electron fluxes peak near the cusp boundary and in the other case they sharply define the CDC boundaries varying in a strictly anti-correlated manner during a large geomagnetic storm. The charge state distribution of these cusp cavity ions is indicative of their seed populations being a mixture of ionospheric and solar wind particles in many cases. Taken together these facts argue for a local acceleration of plasma within the cusp to many 10s and 100s of keV. By their geometry cusp magnetic field lines are connected to all of the magnetopause boundary layers and these cusp charged particles will form an energetic particle layer on the magnetopause. A source of energetic particles in the dayside high-altitude CDC will be effective in transferring the solar wind energy, mass, and momentum into the Earth’s magnetosphere and could provide the source of the ring current ions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Asikainen, T. and K. Mursula, Energetic particle fluxes in the exterior cusp and the high latitude dayside magnetosphere: statistical results form the Cluster/RAPID instrument, Ann. Geophys., 23, 2217–2230 (2005).

    Article  ADS  Google Scholar 

  2. Chen, J., Evidence for particle acceleration in the magnetospheric cusp, Ann. Geophys., 26, 1993–1997 (2008).

    Article  ADS  Google Scholar 

  3. Chen, Jiasheng, T. A. Fritz, R. B. Sheldon, H. E. Spence, W. N. Spjeldvik, J. F. Fennell, S. Livi, A new, temporarily confined population in the polar cap during the August 27, 1996 geomagnetic field distortion period, Geophys. Res. Lett., 24 (12), 1447–1450 (1997).

    Google Scholar 

  4. Chen, Jiasheng, Theodore A. Fritz, Robert B. Sheldon, Harlan E. Spence, Walther N. Spjeldvik, Joseph F. Fennell, Stefano Livi, Christopher T. Russell, Jolene S. Pickett, and Donald A. Gurnett, Cusp energetic particle events: Implications for a major acceleration region of the magnetosphere, J. Geophys. Res., 103 (No. A1), 69–78 (1998).

    Google Scholar 

  5. Dunlop, M. W., B. Lavraud, P. Cargill, M. G. G. T. Taylor, A. Balogh, H. Reme, P. Decreau, K.-H. Glassmeier, R. C. Elphic, J.-M. Bosqued, A. N. Fazakerley, I. Dandouras, C. P. Escoubet, H. Laakso and A. Marchaudon, Cluster Observations of the Cusp: Magnetic Structure and Dynamics, Surveys in Geophysics 26: 1–51, DOI: 10.1007/s10712–005–1871–7 (2005).

    Google Scholar 

  6. Finkemeyer, B U, Harris, J J, Fritz, T A, Chen, J, Matthews, D L, A Survey of the Frequency of Occurrence of CEP Events During the First Two Years of POLAR Operations, SM-42A-02 at the 1999 AGU Spring Meeting (1999).

    Google Scholar 

  7. Fritz, Theodore A., The Role of the Cusp as a Source for Magnetospheric Particles: A New Paradigm, ESA Special Publication of the Proceedings of the Cluster II Workshop on Multiscale/Multipoint Plasma Measurements held at Imperial College, London 22–24 September 1999, ESA SP-499 (2000).

    Google Scholar 

  8. Fritz, T A, Karra, M, Finkemeyer, B, Chen, J, Statistical Studies with Polar of Energetic Particles near the dayside Cusp, SM22B-04 at the 1999 Fall AGU meeting (1999a).

    Google Scholar 

  9. Fritz, T.A., J. Chen, R.B. Sheldon, H.B. Spence, J.F. Fennell, S. Livi, C.T. Russell, and J.S. Pickett, Cusp energetic particle events measured by POLAR spacecraft, Phys. Chem. Earth (C), 24, 135–140 (1999b).

    Google Scholar 

  10. Fritz, T.A., J. Chen, R.B. Sheldon, The Role of the Cusp as a Source for Magnetospheric Particles: A New Paradigm? Adv. in Space Res., 25, No 7–8, 1445–1457 (2000).

    Google Scholar 

  11. Fritz, T. A., J. F. Fennell, S. Livi, J. L. Roeder, A. Daglis, H. Sommer, B. Wilken, B. Kellert, M. Henderson, M. Grande, J. B. Blake, R. Koga, J. Chen, “The Polar CAMMICE Investigation”, available on the following web site: http://www.bu.edu/buspace/papers/cammice_instrument.html

  12. Lavraud, B., A. Fedorov, E. Budnik, A. Grigoriev, P. J. Cargill, M. Dunlop, H. Reme, I. Dandouras, and A. Balogh, Cluster survey of the high-altitude cusp properties: A three-year statistical study, Ann. Geophys., 22(8), 3009–3019 (2004).

    Google Scholar 

  13. Newell, P. T., C.-I. Meng, D. G. Sibeck, and R. Lepping, Some low-altitude cusp dependencies on the interplanetary magnetic field, J. Geophys. Res., 94, 8921–8927 (1989).

    Article  ADS  Google Scholar 

  14. Newell, Patrick T., and Ching-I. Meng, Magnetopause dynamics as inferred from plasma observations on low-altitude satellites, Physics of the Magnetopause, AGU Geophysical Monograph 90, 407–416 (1995).

    Google Scholar 

  15. Niehof, J. T., T. A. Fritz, R.H.W. Friedel, and J. Chen, Interdependence of magnetic field and plasma pressures in cusp diamagnetic cavities, Geophys. Res. Lett., 35, L11101, doi:10.1029/2008GL033589 (2008).

    Google Scholar 

  16. Rae, I. J., F. R. Fenrich, M. Lester, K. A. McWilliams, J. D. Scudder, Solar wind modulation of cusp particle signatures and their associated ionospheric flows, J. Geophys. Res., 109, A03223, doi:10.1029/2003JA010188 (2004).

    Google Scholar 

  17. Russell, C.T., Snare, R.C., Means, J.D., Pierce, D., Dearborn, D., Larson, M., Barr, G. and Le, G., The GGS/Polar Magnetic Fields Investigation, Space Sci. Rev., 71 (1/4), also published as The Global Geospace Mission, in C.T. Russell (ed.), 877 pp, Kluwer, Dordrecht, The Netherlands, pp. 563–582 (1995).

    Google Scholar 

  18. Russell, C. T., J. A. Fedder, S. P. Slinker, X-W. Zhou, G. Le, J. G. Luhmann, F. R. Fenrich, M. O. Chandler, T. E. Moore and S. A. Fuselier, Entry of the POLAR spacecraft into the polar cusp under northward IMF conditions, Geophys. Res. Lett., 25, 3015–3018 (1998).

    Google Scholar 

  19. Shabansky, V. P., Some processes in the magnetosphere, Sp. Sci. Rev., 12, 299–418 (1970).

    Article  ADS  Google Scholar 

  20. Vogiatzis, I. I., T. E. Sarris, E. T. Sarris, O. Santolík, I. Dandouras, P. Robert, T. A. Fritz, Q.-G. Zong, and H. Zhang, Cluster observations of particle acceleration up to supra-thermal energies in the cusp region related to low-frequency wave activity–possible implications for the substorm initiation process, Ann. Geophys., 26, 653–669 (2008).

    Article  ADS  Google Scholar 

  21. Walsh, B. M.,T. A. Fritz, N. M. Lender, J. Chen, and K. E. Whitaker, Energetic Particles Observed by ISEE-1 and ISEE-2 in a Cusp Diamagnetic Cavity on September 29, 1978, Ann. Geophys., 25, 2633–2640 (2007).

    Article  ADS  Google Scholar 

  22. Whitaker, K. E., J. Chen, and T. A. Fritz, CEP populations observed by ISEE 1, Geophys. Res. Lett., 33, L23105, doi:10.1029/2006GL027731 (2006).

    Google Scholar 

  23. Whitaker, K.E., T.A. Fritz, J. Chen, and M.M. Klida, Energetic particle sounding of the magnetospheric cusp with ISEE-1, Ann. Geophys., 25, No. 5, p1175–1182 (2007).

    Google Scholar 

  24. Zhang, H., Q.-G. Zong, T. A. Fritz, S. Y. Fu, S. Schaefer, K. H. Glassmeier, P. W. Daly, H. Rème, and A. Balogh, Cluster observations of collisionless Hall reconnection at high-latitude magnetopause, J. Geophys. Res., 113, A03204, doi:10.1029/2007JA012769 (2008).

    Google Scholar 

  25. Zhou, X.-Z., T. A. Fritz, Q.-G. Zong, Z. Y. Pu, Y.-Q. Hao, and J.-B. Cao, The cusp: a window for particle exchange between the radiation belt and the solar wind, Annales Geophysicae, 24, 3131–3137 (2006).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

I would thank the reviewers of this paper, Drs. Jiasheng Chen, George Siscoe, Hui Zhang and Q.-G. Zong and graduate students Brian Walsh, Kate Whitaker, and Jon Niehof for many useful discussions and to acknowledge the contributions of the various instrument teams for CAMMICE, CEPPAD, and Hydra on Polar and RAPID on Cluster. The Polar effort has been supported at Boston University under a series of NASA grants: NAG5–2578, NAG5–7677, NAG5–11397, and NNG05GD23G. The Cluster effort at Boston University has been supported under another series of NASA grants: NAG5–10108 and NNG05GE90G.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. A. Fritz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this paper

Cite this paper

Fritz, T.A. (2010). Perspectives Gained from a Combination of Polar, Cluster and ISEE Energetic Particle Measurements in the Dayside Cusp. In: Laakso, H., Taylor, M., Escoubet, C. (eds) The Cluster Active Archive. Astrophysics and Space Science Proceedings. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3499-1_28

Download citation

  • DOI: https://doi.org/10.1007/978-90-481-3499-1_28

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-3498-4

  • Online ISBN: 978-90-481-3499-1

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics