Skip to main content

Mo, Sb and Se Removal from Scrubber Effluent of a Waste Incinerator

  • Conference paper
Water Treatment Technologies for the Removal of High-Toxicity Pollutants

Abstract

Common physicochemical treatment of industrial wastewater is not very efficient regarding the removal of the oxyanion forming elements selenium, molybdenum and antimony. An industrial case is described where effluents from the wet treatment of flue gases from a rotary kiln for the incineration of industrial waste, contain variable amounts of the elements mentioned. The effluent of the scrubbers is neutralized, coagulated and flocculated. Mercury is removed by precipitation with TMT. The installation shows satisfactory results, complying with the regulations for common cations. The effluent of the settling tank still contains variable concentrations of selenium, molybdenum and antimony and the overall removal efficiency is not reproducible for these elements. Laboratory experiments are presented for the removal by coprecipitation and the results are discussed. Possible treatment methods are selected and evaluated in a matrix that may help in the selection of methods for the simultaneous removal of oxyanion forming elements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. B.J. Lee, and N. Koch, Selenium removal from petroleum refinery wastewater, in: NPRA Environmental Conference Papers (NPRA Washington DC Publication Department, 1998).

    Google Scholar 

  2. L.G. Twidwell, J. McCloskey, P. Miranda, and M. Gale, Technologies and potential technologies for removing selenium from process and mine wastewater, Proceedings of the TMS Fall Extraction and Processing Conference 2, 1645–1656 (1999).

    CAS  Google Scholar 

  3. A. Kapoor, S. Tanjore, and T. Viraraohavan, Removal of selenium from water and wastewater, International Journal of Environmental Studies 49 (2 Sect.B), 137–147 (1995).

    Article  CAS  Google Scholar 

  4. S.A. Hannah, M. Jelus, and J.M. Cohen, Removal of uncommon trace metals by physical and chemical treatment processes, Journal of the Water Pollution Control Federation 49 (11), 2297–2309 (1977).

    CAS  Google Scholar 

  5. R. Smith, and S.G. Wiechers, Elimination of toxic metals from wastewater by an integrated wastewater treatment/water reclamation system, Water SA 7(2), 65–78 (1981).

    Google Scholar 

  6. Literature Review of Environmental Toxicity of Mercury, Cadmium, Selenium and Antimony in Metal Mining Effluents (Beak International Inc, March 2002).

    Google Scholar 

  7. M. Vandenbranden, C. Vandecasteele, Verwijdering van Molybdeen uit afvalwater door middel van coprecipitatie en anionenuitwisseling, Katholieke Universiteit Leuven, Faculteit der toegepaste wetenschappen, Departement chemische ingenieurstechnieken, Laboratorium voor Industriële Scheikunde, Belgium, Eindverhandeling Licentiaat Milieubeheer, 1991 (in Dutch).

    Google Scholar 

  8. M. Kang, T. Kamei, and Y. Magara, Comparing polyaluminum chloride and ferric chloride for antimony removal, Water Research 37 (17), 4171–4179 (2003).

    Article  CAS  Google Scholar 

  9. A. Sobolewski, Evaluation of treatment options to reduce water-borne Selenium at coalmines in West-central Alberta, Report, Microbial Technologies Inc., 2005/2006, 32 pages.

    Google Scholar 

  10. J.O. Leckie, D.T. Merrill, and W. Chow, Trace element removal from power plant wastestreams by adsorption/coprecipitation with amorphous iron oxyhydroxide, AIChE Symposium Series 81 (243), 28–42 (1985).

    CAS  Google Scholar 

  11. D.T. Merrill, M.A. Manzione, and J.J. Peterson, Field evaluation of arsenic and selenium removal by iron coprecipitation, Journal of the Water Pollution Control Federation 58 (1), 18–26 (1986).

    CAS  Google Scholar 

  12. Trace element removal by coprecipitation with amorphous iron oxyhydroxide: engineering evaluation, Electric Power Research Institute Goal Combustion Systems Division, Report EPRI CS, 1985, 264 pages.

    Google Scholar 

  13. D. Bhattacharvva, A.B. Jumawan Jr., and R.B. Grieves, Separation of toxic heavy metals by sulfide precipitation, Separation Science and Technology 14(5), 441–452 (1979).

    Article  Google Scholar 

  14. S. Shoji, K. Okamura, and M. Inoue, The molybdenum removal efficiency of the coagulating sedimentation with calcium addition method used to treat wastewater containing molybdenum, Bulletin of Kanagawa Environmental Research Center No. 25, 47–52 (2002).

    CAS  Google Scholar 

  15. V. Mavrov, S. Stamenov, E. Todorov, H. Chmiel, and T. Erwe, New hybrid electro-coagulation membrane process for removing selenium from industrial wastewater, Desalination 201(1–3), 290–296 (2006).

    Article  CAS  Google Scholar 

  16. D. Mills, A New Process for Electrocoagulation, Journal AWWA 92(6) (2000).

    Google Scholar 

  17. L. Twidwell, J. McCloskey, H. Joyce, E. Dahlgren, and A. Hadden, Removal of selenium oxyanions from mine waters utilizing elemental iron and galvanically coupled metals, in: Proceedings of the Jan D. Miller Symposium — Innovations in Natural Resource Processing (2005) pp. 299–313.

    Google Scholar 

  18. C. Noubactep, A critical review on the process of contaminant removal in FeO-H2O systems, Environmental Technology 29(8), 909–992 (2008).

    Article  CAS  Google Scholar 

  19. A.P. Murphy, Removal of selenate from water by chemical reduction, Industrial and Engineering Chemistry Research 27(1), 187–191 (1988).

    Article  CAS  Google Scholar 

  20. T. Pickett, J. Sonstegard, and B. Bonkoski, Using biology to treat seleniun, Power Engineering 110(11), 140–144 (2006).

    Google Scholar 

  21. D.J. Adams, and P. Pennington, Selenium and arsenic removal from mining wastewaters, SME Annual Meeting: Got Mining, 385–388 (2005).

    Google Scholar 

  22. Y. Zhang, J. Wang, C. Amrhein, and W.T. Frankenberger Jr., Removal of selenate from water by zerovalent iron, Journal of Environmental Quality 34, 487 (2005).

    Article  Google Scholar 

  23. G. Jegadeesan, K. Mondal, and S.B. Lalvani, Selenate removal from sulfate containing aqueous solutions, Environmental Technology 26(10), 1181–1187 (2005).

    Article  CAS  Google Scholar 

  24. R.A. Zingaro, D.C. Dufner, A.P. Murphy, and C.D. Moody, Reduction of oxoselenium anions by iron(II)hydroxide, Environmental International 23(3), 299–304 (1997).

    Article  CAS  Google Scholar 

  25. M. Morita, H. Uemoto, and A. Watanabe, Reduction of selenium oxyanions in wastewater using two bacterial strains, Engineering in Life Sciences 7(3), 235–240 (2007).

    Article  CAS  Google Scholar 

  26. J. Chung, R. Nerenberg, and B.E. Rittmann, Bioreduction of selenate using a hydrogen-based membrane biofilm reactor, Environmental Science and Technology 40(5), 1664–1671 (2006).

    Article  CAS  Google Scholar 

  27. M.A. Rege, D.R. Yonge, D.P. Mendoza, J.N. Petersen, Y. Bereded-Samuel, D.L. Johnstone, W.A. Apel, and J.M. Barnes, Selenium reduction by a denitrifying consortium, Biotechnology and Bioengineering 62(4) 479–484 (1999).

    Article  CAS  Google Scholar 

  28. E. Van Hullenbusch, F. Farges, M. Lenz, P. Lens, and G.E. Brown Jr., Selenium speciation in biofilms from granular sludge bed reactors used for wastewater treatment, in: AIP Conference Proceedings 882 (2007), pp. 229–231.

    Google Scholar 

  29. A. Sobolewski, A review of processes responsible for metal removal in wetlands treating contaminated mine drainage, International Journal of Phytoremediation 1(1), 19–51 (1999).

    Article  CAS  Google Scholar 

  30. N. Terry, S.V. Sambukumar, and D.L. LeDuc, Phytoremediation of toxic trace elements in soil and water, Acta Biotechnologica 23(2–3), 281–288 (2003).

    Article  CAS  Google Scholar 

  31. D.L. LeDuc, and N. Terry, Biotechnological approaches for enhancing phytoremediation of heavy metals and metalloids, Journal of Industrial Microbiology and Biotechnology 32(11–12), 514–520 (2005).

    Google Scholar 

  32. E.A.H. Pilon-Smits, M.P. De Souza, G. Hong, A. Amini, R.C. Bravo, S.T. Payabyab, and N. Terry, Selenium volatilization and accumulation by twenty aquatic plant species, Journal of Environmental Quality 28(3), 1011–1018 (1999).

    Article  CAS  Google Scholar 

  33. D. Hansen, P.J. Duda, A. Zayed, and N. Terry, Selenium removal by constructed wetlands: Role of biological volatilization, Environmental Science and Technology 32(5), 591–597 (1998).

    Article  CAS  Google Scholar 

  34. S.R. Qiu, H.F. Lai, M.J. Roberson, M.L. Hunt, C. Amrhein, L.C. Giancarlo, G.W. Flynn, and J.A. Yarmoff, Removal of contaminants from aqueous solution by reaction with iron surfaces, Langmuir 16(5), 2230–2236 (2000).

    Article  CAS  Google Scholar 

  35. M. Zhana, and E.J. Reardon, Removal of B, Cr, Mo, and Se from wastewater by incorporation into hydrocalumite and ettringite, Environmental Science and Technology 37(13), 2947–2952 (2003).

    Article  CAS  Google Scholar 

  36. G. Cornelis, C. Anette Johnson, T. Van Gerven, and C. Vandecasteele, Literature review on leaching mechanisms of oxyanionic metalloid and metal species in alkaline solid wastes, Applied Geochemistry 23, 955–976 (2008).

    Article  CAS  Google Scholar 

  37. L.J. Cumming, L. Wang, and A.S.C. Chen, Arsenic and Antimony Removal from Drinking Water by Adsorptive Media, U.S. EPA Demonstration Project at South Truckee Meadows General Improvement District (STMGID), Interim Evaluation Report EPA/600/R-07/081, 1/08/2007.

    Google Scholar 

  38. K. Gannon, and D.J. Wilson, Removal of antimony from aqueous systems, Separation Science and Technology 21(5), 475–493 (1986).

    Article  CAS  Google Scholar 

  39. M. Rovira, J. Gimenez, M. Martinez, X. Martinez-Llado, J. de Pablo, V. Marti, and L. Duro, Sorption of selenium (IV) and selenium (VI) onto natural iron oxides: goethite and hematite, Journal of Hazardous Materials 150, 279–284 (2008).

    Article  CAS  Google Scholar 

  40. D. Oti, and M. Trotz, Characterisation and adsorption of arsenate and selenite onto Kemiron, Journal of Environmental Science and Health 43(10), 1184–1191 (2008).

    Article  CAS  Google Scholar 

  41. R. Watkins, D. Weiss, W. Dubbin, K. Peel, B. Coles, and T. Arnold, Investigations into the kinetics and thermodynamics of Sb(III) adsorption on Goethite (alpha-FeOOH), Journal of Collid and Interface Science 303(2), 639–664 (2006).

    Article  CAS  Google Scholar 

  42. U. Wingenfelder, G. Furrer, and R. Schulin, Sorption of antimonate by HDTMA-modified zeolite, Microporous and Mesoporous Materials 95, 265–271 (2006).

    Article  CAS  Google Scholar 

  43. A. Leuz, H. Moench, and C. Johnson, Sorption of Sb(III) and Sb(V) to Goethite: influence on Sb(III) oxidation and immobilization, Environmental Science and Technology 40(23) 7277–7282 (2006).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Lievens .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this paper

Cite this paper

Lievens, P., Block, C., Cornelis, G., Vandecasteele, C., De Voogd, J.C., Van Brecht, A. (2009). Mo, Sb and Se Removal from Scrubber Effluent of a Waste Incinerator. In: Václavíková, M., Vitale, K., Gallios, G.P., Ivaničová, L. (eds) Water Treatment Technologies for the Removal of High-Toxicity Pollutants. NATO Science for Peace and Security Series C: Environmental Security. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3497-7_17

Download citation

Publish with us

Policies and ethics