Skip to main content

Quantum Space-Times

Beyond the Continuum of Minkowski and Einstein

  • Chapter
  • First Online:
Minkowski Spacetime: A Hundred Years Later

Part of the book series: Fundamental Theories of Physics ((FTPH,volume 165))

Abstract

In general relativity space-time ends at singularities. The big bang is considered as the Beginning and the big crunch, the End. However these conclusions are arrived at by using general relativity in regimes which lie well beyond its physical domain of validity. Examples where detailed analysis is possible show that these singularities are naturally resolved by quantum geometry effects. Quantum space-times can be vastly larger than what Einstein had us believe. These non-trivial space-time extensions enable us to answer of some long standing questions and resolve of some puzzles in fundamental physics. Thus, a century after Minkowski’s revolutionary ideas on the nature of space and time, yet another paradigm shift appears to await us in the wings.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hajicek, P.: Origin of black hole radiation. Phys. Rev. D36, 1065 (1987)

    MathSciNet  ADS  Google Scholar 

  2. Ashtekar, A., Lewandowski, J.: Background independent quantum gravity: A status report Class. Quant. Grav. 21, R53–R152 (2004)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  3. Rovelli, C.: Quantum gravity. Cambridge University Press, Cambridge (2004)

    Book  MATH  Google Scholar 

  4. Thiemann, T.: Introduction to modern canonical quantum general relativity. Cambridge University Press, Cambridge, (2007)

    Book  Google Scholar 

  5. Ashtekar, A., Lewandowski, J., Marolf, D., Mourão, J., Thiemann, T.: Quantization of diffeomorphism invariant theories of connections with local degrees of freedom. Jour. Math. Phys. 36, 6456–6493 (1995)

    Article  MATH  ADS  Google Scholar 

  6. Rovelli, R., Smolin, L.: Discreteness of area and volume in quantum gravity. Nucl. Phys. B442, 593–622 (1995); Erratum B456, 753 (1996)

    Article  MathSciNet  ADS  Google Scholar 

  7. Ashtekar, A., Lewandowski, J.: Quantum theory of geometry I: area operators. Class. Quantum Grav. 14, A55–A81 (1997)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  8. Ashtekar, A., Lewandowski, J.: Quantum theory of geometry II: volume operators. Adv. Theo. & Math. Phys. 1, 388–429 (1997)

    MATH  MathSciNet  Google Scholar 

  9. Perez, A.: Spin foam models for quantum. Class. Quant. Grav. 20, R43–R104 (2003)

    Article  MATH  ADS  Google Scholar 

  10. Bojowald, M.: Absence of singularity in loop quantum cosmology. Phys. Rev. Lett. 86, 5227–5230 (2001) arXiv:gr-qc/0102069

    Article  MathSciNet  ADS  Google Scholar 

  11. Bojowald, M.: Loop quantum cosmology. Liv. Rev. Rel. 8, 11 (2005)

    Google Scholar 

  12. Ashtekar, A.: An introduction to loop quantum gravity through cosmology. Nuovo Cimento 112B, 1–20 (2007) arXiv:gr-qc/0702030

    Google Scholar 

  13. Ashtekar, A., Bojowald, M.: Quantum geometry and the Schwarzschild singularity. Class. Quant. Grav. 23, 391–411 (2006) Modesto, L. Black hole interior from loop quantum gravity, gr-qc/0611043

    Article  MATH  MathSciNet  ADS  Google Scholar 

  14. Boehmer, C.G., Vandersloot, K.: Loop quantum dynamics of the schwarzschild interior. Phys. Rev. D76, 104030 (2007)

    ADS  Google Scholar 

  15. Ashtekar, A., Taveras, V., Varadarajan, M.: Information is not lost in 2-dimensional black hole evaporation. arXiv:0801.1811

    Google Scholar 

  16. Hartle, J.B., Hawking, S.W.: Wave function of the universe. Phys. Rev. D 28, 2960 (1983)

    Article  MathSciNet  ADS  Google Scholar 

  17. Gasperini, M., Veneziano, G.: The pre-big bang scenario in string cosmology. Phys. Rept. 373, 1 (2003) arXiv:hep-th/0207130

    Article  MathSciNet  ADS  Google Scholar 

  18. Khoury, J., Ovrut, B.A., Steinhardt, P.J., Turok, N.: The ekpyrotic universe: colliding branes and the origin of the hot big bang. Phys. Rev. D64, 123522 (2001) hep-th/0103239

    MathSciNet  ADS  Google Scholar 

  19. Khoury, J., Ovrut, B., Seiberg, N., Steinhardt, P.J., Turok, N.: From big crunch to big bang. Phys. Rev. D65, 086007 (2002) hep-th/0108187

    ADS  Google Scholar 

  20. Ashtekar, A., Stachel, J. (eds.): Conceptual problems of quantum gravity. Birkhäuser, Boston (1988)

    Google Scholar 

  21. Komar, A.: Quantization program for general relativity. In: Carmeli, M., Fickler, S.I., Witten, L. (eds.) Relativity. Plenum, New York (1970); KuchaĹ™, K.: Canonical methods of quantization. In: Isham, C.J., Penrose, R., Sciama, D.W. (eds.) Quantum gravity 2, a second Oxford symposium. Clarendon Press, Oxford (1981)

    Google Scholar 

  22. DeWitt, B.S.: Quantum theory of gravity I. The canonical theory. Phys. Rev. 160, 1113–1148 (1967)

    MATH  Google Scholar 

  23. Misner, C.W.: Mixmaster universe. Phys. Rev. Lett. 22, 1071–1074 (1969); Minisuperspace. In: Magic without Magic: John Archibald Wheeler; a collection of essays in honor of his sixtieth birthday. W. H. Freeman, San Francisco (1972)

    Google Scholar 

  24. Ashtekar, A., Pawlowski, T., Singh, P.: Quantum nature of the big bang: an analytical and numerical investigation I. Phys. Rev. D73, 124038 (2006)

    MathSciNet  ADS  Google Scholar 

  25. Ashtekar, A., Pawlowski, T., Singh, P.: Loop quantum cosmology in the pre-inflationary epoch (in preparation)

    Google Scholar 

  26. Rovelli, C.: Quantum mechanics without time: a model. Phys. Rev. D42, 2638 (1990)

    ADS  Google Scholar 

  27. Ashtekar, A., Pawlowski, T., Singh, P.: Quantum nature of the big bang: improved dynamics. Phys. Rev. D74, 084003 (2006)

    MathSciNet  ADS  Google Scholar 

  28. Kiefer, C.: Wavepsckets in in minisuperspace. Phys. Rev. D38, 1761–1772 (1988)

    MathSciNet  ADS  Google Scholar 

  29. Marolf, D.: Refined algebraic quantization: systems with a single constraint. arXive:gr-qc/9508015; Quantum observables and recollapsing dynamics. Class. Quant. Grav. 12, 1199–1220 (1994); Ashtekar, A., Bombelli, L., Corichi, A.: Semiclassical states for constrained systems. Phys. Rev. D72, 025008 (2005)

    Google Scholar 

  30. Kamenshchik, A., Kiefer, C., Sandhofer, B.: Quantum cosmology with big break singularity. Phys. Rev. D76, 064032 (2007)

    MathSciNet  ADS  Google Scholar 

  31. Ashtekar, A., Pawlowski, T., Singh, P., Vandersloot, K.: Loop quantum cosmology of k = 1 FRW models. Phys. Rev. D75, 0240035 (2006); Szulc, L., Kaminski, W., Lewandowski, J.: Closed FRW model in loop quantum cosmology. Class. Quant. Grav. 24, 2621–2635 (2006)

    Google Scholar 

  32. Lewandowski, J., Okolow, A., Sahlmann, H., Thiemann, T.: Uniqueness of diffeomorphism invariant states on holonomy flux algebras. Comm. Math. Phys. 267, 703–733 (2006); Fleishchack, C.: Representations of the Weyl algebra in quantum geometry. arXiv:math-ph/0407006

    Google Scholar 

  33. Ashtekar, A., Bojowald, M. Lewandowski, J.: Mathematical structure of loop quantum cosmology. Adv. Theo. Math. Phys. 7, 233–268 (2003)

    MathSciNet  Google Scholar 

  34. Ashtekar, A., Pawlowski, T., Singh, P.: Quantum nature of the big bang. Phys. Rev. Lett. 96, 141301 (2006), arXiv:gr-qc/0602086

    Google Scholar 

  35. Willis, J.: On the low energy ramifications and a mathematical extension of loop quantum gravity. Ph.D. Dissertation, The Pennsylvaina State University (2004); Ashtekar, A., Bojowald, M., Willis, J.: Corrections to Friedmann equations induced by quantum geometry, IGPG preprint (2004); Taveras, V.: LQC corrections to the Friedmann equations for a universe with a free scalar field, IGC preprint (2007)

    Google Scholar 

  36. Bojowald, M.: Dynamical coherent states and physical solutions of quantum cosmological bounces. Phys. Rev. D 75, 123512 (2007)

    Google Scholar 

  37. Ashtekar, A., Corichi, A., Singh, P.: Robustness of predictions of loop quantum cosmology. PRD (in press), arXiv:0710.3565

    Google Scholar 

  38. Green, D., Unruh, W.: Difficulties with recollapsing models in closed isotropic loop quantum cosmology. Phys. Rev. D70, 103502 (2004) arXiv:gr-qc/04-0074

    Google Scholar 

  39. Ashtekar, A., Schilling, T.A.: Geometrical formulation of quantum mechanics. In: Harvey, A. (ed.) On Einstein’s path: essays in honor of Engelbert Schücking. pp. 23–65. Springer, New York (1999) arXiv:gr-qc/9706069

    Google Scholar 

  40. Penrose, R.: Zero rest mass fields including gravitation. Proc. R. Soc. (London) 284, 159–203 (1965)

    Google Scholar 

  41. Hawking, S.W.: The event horizon. In: DeWitt, B.S., DeWitt, C.M. (eds.). Black holes, North-Holland, Amsterdam (1972)

    Google Scholar 

  42. Hawking, S.W.: Gravitational radiation from colliding black holes. Phys. Rev. Lett. 26, 1344–1346 (1971)

    Article  ADS  Google Scholar 

  43. Hawking, S.W.: particle creation by black holes, Commun. Math. Phys. 43, 199–220 (1975)

    Article  MathSciNet  ADS  Google Scholar 

  44. Ashtekar, A., Beetle, C., Dreyer, O., Fairhurst, S., Krishnan, B., Lewandowski, J., Wisniewski, J.: Generic isolated horizons and their applications. Phys. Rev. Lett. 85, 3564–3567 (2000)

    Article  MathSciNet  ADS  Google Scholar 

  45. Ashtekar, A., Krishnan, B.: Dynamical horizons: energy, angular momentum, fluxes and balance laws. Phys. Rev. Lett. 89, 261101–261104 (2002)

    Article  MathSciNet  ADS  Google Scholar 

  46. Ashtekar, A., Krishnan, B.: Dynamical horizons and their properties. Phys. Rev. D68, 104030–104055 (2003)

    MathSciNet  ADS  Google Scholar 

  47. Ashtekar, A., Krishnan, B.: Isolated and dynamical horizons and their applications. Living Rev. Rel. 10, 1–78 (2004) gr-qc/0407042

    Google Scholar 

  48. Ashtekar, A., Galloway, G.: Some uniqueness results for dynamical horizons. Adv. Theor. Math. Phys. 9, 1–30 (2005)

    MATH  MathSciNet  Google Scholar 

  49. Ashtekar, A., Baez, J., Corichi, A., Krasnov, K.: Quantum geometry and black hole entropy. Phys. Rev. Lett. 80, 904–907 (1998); Ashtekar, A., Baez, J., Krasnov, K.: Quantum geometry of isolated horizons and black hole entropy. Adv. Theor. Math. Phys. 4, 1–94 (2000); Ashtekar, A., Engle, J., Van Den Broeck, C.: Quantum horizons and black hole entropy: inclusion of distortion and rotation. Class. Quant. Grav. 22, L27–L33 (2005)

    Google Scholar 

  50. Ashtekar, A., Bojowald, M.: Black hole evaporation: a paradigm. Class. Quant. Grav. 22, 3349–3362 (2005)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  51. Callen, C.G., Giddings, S.B., Harvey, J.A., Strominger, A.: Evanescent black holes. Phys. Rev. D45, R1005–R1010 (1992)

    ADS  Google Scholar 

  52. Giddings, S.B.: Quantum mechanics of black holes. arXiv:hep-th/9412138; Strominger, A.: Les Houches lectures on black holes. arXiv:hep-th/9501071

    Google Scholar 

  53. Geroch, R., Horowitz, G.: Asymptotically simple does not imply asymptotically Minkowskian. Phys. Rev. Lett. 40, 203–207 (1978); Erratum: Phys. Rev. Lett. 40, 483 (1978)

    Google Scholar 

  54. Giddings, S.B., Nelson, W.M.: Quantum emission from two-dimensional black holes. Phys. Rev. D46, 2486–2496 (1992)

    MathSciNet  ADS  Google Scholar 

  55. Ashtekar, A., Pierri, M.: Probing quantum gravity through exactly soluble midi-superspaces I. J. Math. Phys. 37, 6250–6270 (1996)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  56. Ashtekar, A.: Large quantum gravity effects: Unexpected limitations of the classical theory. Phys. Rev. Lett. 77, 4864–4867 (1996)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  57. Low, D.A.: Semiclassical approach to black hole evaporation. Phys. Rev. D47, 2446–2453 (1993); Pirqan, T., Strominger, A.: Numerical analysis of black hole evaporation. Phys. Rev. D48, 4729–4734

    Google Scholar 

  58. Laddha, A.: Polymer quantization of the CGHS model I. 24, 4969–4988 (2007); Polymer quantization of the CGHS model II. Class. Quantum Grav. 24, 4989–5009 (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abhay Ashtekar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Ashtekar, A. (2010). Quantum Space-Times. In: Petkov, V. (eds) Minkowski Spacetime: A Hundred Years Later. Fundamental Theories of Physics, vol 165. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3475-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-90-481-3475-5_7

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-3474-8

  • Online ISBN: 978-90-481-3475-5

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics