Skip to main content

Extreme DNA Bending: Molecular Basis of the Regulatory Breadth of IHF

  • Chapter
Bacterial Chromatin

Abstract

The Integration host factor (IHF) is a heterodimeric, sequence-specific DNA-binding and DNA-bending protein found in many types of eubacteria. The sole function of IHF is to bring about a sharp curvature in the target DNA (up to ≥ 160°). Such a drastic change in DNA shape has been evolutionarily recruited for controlling a large number of functions that depend on the architecture of given genomic sites. These include the organization of the bacterial nucleoid and the transcriptional control of distinct promoters. The growing availability of bacterial genomes allows a comparative approach to survey the regulatory breadth of IHF in a wider context. In this Chapter, we use the sequence of the IHF protein of the soil bacterium Pseudomonas putida as a starting point to examine in detail the basis of the recognition of DNA sequences by this nucleoid-associated protein, in particular the correlation between sequence conservation and DNA interaction for each of the IHF chains. This is greatly facilitated by comparing the protein sequence and the DNA binding specificity of IHF with those of similar proteins HU and the transcription factor 1 (TF1) from bacteriophage SPO1 of Bacillus subtilis. Mapping of the fully conserved amino acids and the protein-specific sites for each chain of the corresponding tridimensional structures finely correlates with those sites involved in DNA interactions and maintaining the protein dimer structure. The sequence conservation profile of the DNA-binding regions of these proteins shows that chain B of IHF is more closely related to HU/TF1 than to chain A of IHF, suggesting a separate evolutionary origin. Furthermore, some features of the DNA recognition mechanism seem to be exclusive to IHF and cannot be fulfilled by HU or TF1 proteins. HU and TF1 can be embraced by DNA as IHF can by the action of residues conserved in the three proteins (thereby explaining why HU/TF1 and IHF can be partially replaced by each other). In contrast, only the interactions mediated by tree-determinants (i.e. those residues that are specific for each chain of IHF) can afford a high DNA recognition specificity. These analyses highlight the importance of DNA binding versus DNA bending specificities for expansion of the regulatory space of such nucleoid-associated proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abril MA, Ramos JL (1993) Physical organization of the upper pathway operon promoter of the Pseudomonas TOL plasmid. Sequence and positional requirements for XylR-dependent activation of transcription. Mol Gen Genet 239:281-288

    CAS  PubMed  Google Scholar 

  • Aeling KA, Opel ML, Steffen NR, Tretyachenko-Ladokhina V, Hatfield GW, Lathrop RH, Senear DF (2006) Indirect recognition in sequence-specific DNA binding by Escherichia coli integration host factor: the role of DNA deformation energy. J Biol Chem 281:39236-39248

    Article  CAS  PubMed  Google Scholar 

  • Aeling KA, Steffen NR, Johnson M, Hatfield GW, Lathrop RH, Senear DF (2007) DNA deformation energy as an indirect recognition mechanism in protein-DNA interactions. IEEE/ACM Trans Comput Biol Bioinform 4:117-125

    Article  CAS  PubMed  Google Scholar 

  • Ali Azam T, Iwata A, Nishimura A, Ueda S, Ishihama A (1999) Growth phase-dependent variation in protein composition of the Escherichia coli nucleoid. J Bacteriol 181:6361-6370

    CAS  PubMed  Google Scholar 

  • Ali BM, Amit R, Braslavsky I, Oppenheim AB, Gileadi O, Stavans J (2001) Compaction of single DNA molecules induced by binding of integration host factor (IHF). Proc Natl Acad Sci USA 98:10658-10663

    Article  CAS  PubMed  Google Scholar 

  • Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389-3402

    Article  CAS  PubMed  Google Scholar 

  • Balandina A, Kamashev D, Rouvière-Yaniv J (2002) The bacterial histone-like protein HU specifically recognizes similar structures in all nucleic acids. DNA, RNA, and their hybrids. J Biol Chem 277:27622-27628

    Article  CAS  PubMed  Google Scholar 

  • Benevides JM, Danahy J, Kawakami J, Thomas GJ Jr (2008) Mechanisms of specific and nonspecific binding of architectural proteins in prokaryotic gene regulation. Biochemistry 47:3855-3862

    Article  CAS  PubMed  Google Scholar 

  • Bertoni G, Fujita N, Ishihama A, de Lorenzo V (1998) Active recruitment of sigma54-RNA polymerase to the Pu promoter of Pseudomonas putida: role of IHF and alphaCTD. EMBO J 17:5120-5128

    Article  CAS  PubMed  Google Scholar 

  • Bonnefoy E, Rouvière-Yaniv J (1991) HU and IHF, two homologous histone-like proteins of Escherichia coli, form different protein-DNA complexes with short DNA fragments. EMBO J 10:687-696

    CAS  PubMed  Google Scholar 

  • Bonnefoy E, Rouvière-Yaniv J (1992) HU, the major histone-like protein of E. coli, modulates the binding of IHF to oriC. EMBO J 11:4489-4496

    CAS  PubMed  Google Scholar 

  • Calb R, Davidovitch A, Koby S, Giladi H, Goldenberg D, Margalit H, Holtel A, Timmis K, Sanchez-Romero JM, de Lorenzo V, Oppenheim AB (1996) Structure and function of the Pseudomonas putida integration host factor. J Bacteriol 178:6319-6326

    CAS  PubMed  Google Scholar 

  • Casari G, Sander C, Valencia A (1995) A method to predict functional residues in proteins. Nat Struct Biol 2:171-178

    Article  CAS  PubMed  Google Scholar 

  • Claret L, Rouvière-Yaniv J (1997) Variation in HU composition during growth of Escherichia coli: the heterodimer is required for long term survival. J Mol Biol 273:93-104

    Google Scholar 

  • de Lorenzo V, Herrero M, Metzke M, Timmis KN (1991) An upstream XylR- and IHF-induced nucleoprotein complex regulates the sigma 54-dependent Pu promoter of TOL plasmid. EMBO J 10:1159-1167

    PubMed  Google Scholar 

  • Delic-Attree I, Toussaint B, Vignais PM (1995) Cloning and sequence analyses of the genes coding for the integration host factor (IHF) and HU proteins of Pseudomonas aeruginosa. Gene 154:61-64

    Article  CAS  PubMed  Google Scholar 

  • Delic-Attree I, Toussaint B, Froger A, Willison JC, Vignais PM (1996) Isolation of an IHF-deficient mutant of a Pseudomonas aeruginosa mucoid isolate and evaluation of the role of IHF in algD gene expression. Microbiology 142:2785-2793

    Article  CAS  PubMed  Google Scholar 

  • Ditto MD, Roberts D, Weisberg RA (1994) Growth phase variation of integration host factor level in Escherichia coli. J Bacteriol 176:3738-3748

    CAS  PubMed  Google Scholar 

  • Dixit S, Singh-Zocchi M, Hanne J, Zocchi G (2005) Mechanics of binding of a single integration-host-factor protein to DNA. Phys Rev Lett 94:118101

    Article  PubMed  Google Scholar 

  • dos Santos MT, Rodrigues PS (2005) A genomic-scale search for regulatory binding sites in the integration host factor regulon of Escherichia coli K12. Genet Mol Res 4:783-789

    PubMed  Google Scholar 

  • Engelhorn M, Geiselmann J (1998) Maximal transcriptional activation by the IHF protein of Escherichia coli depends on optimal DNA bending by the activator. Mol Microbiol 30:431-441

    Article  CAS  PubMed  Google Scholar 

  • Freundlich M, Ramani N, Mathew E, Sirko A, Tsui P (1992) The role of integration host factor in gene expression in Escherichia coli. Mol Microbiol 6:2557-2563

    Article  CAS  PubMed  Google Scholar 

  • Friedman DI, Weglenska A, Jacob B, Sirko A, Pratt TS, Steiner T, Feldman LS, Walker KA, Osuna R (1988) Integration host factor: a protein for all reasons. Cell 55:545-554

    Article  CAS  PubMed  Google Scholar 

  • Giladi H, Koby S, Prag G, Engelhorn M, Geiselmann J, Oppenheim AB (1998) Participation of IHF and a distant UP element in the stimulation of the phage lambda PL promoter. Mol Microbiol 30:443-451

    Article  CAS  PubMed  Google Scholar 

  • Gober JW, Shapiro L (1990) Integration host factor is required for the activation of developmentally regulated genes in Caulobacter. Genes Dev 4:1494-1504

    Article  CAS  PubMed  Google Scholar 

  • Goodman SD, Nicholson SC, Nash HA (1992) Deformation of DNA during site-specific recombination of bacteriophage lambda: replacement of IHF protein by HU protein or sequence-directed bends. Proc Natl Acad Sci USA 89:11910-11914

    Article  CAS  PubMed  Google Scholar 

  • Goodrich JA, Schwartz ML, McClure WR (1990) Searching for and predicting the activity of sites for DNA binding proteins: compilation and analysis of the binding sites for Escherichia coli integration host factor (IHF). Nucleic Acids Res 18:4993-5000

    Article  CAS  PubMed  Google Scholar 

  • Goosen N, van de Putte P (1995) The regulation of transcription initiation by integration host factor. Mol Microbiol 16:1-7

    Google Scholar 

  • Grainger DC, Hurd D, Goldberg MD, Busby SJW (2006) Association of nucleoid proteins with coding and non-coding segments of the Escherichia coli genome. Nucleic Acids Res 34:4642-4652

    Article  CAS  PubMed  Google Scholar 

  • Guex N, Peitsch MC (1997) SWISS-MODEL and the Swiss-PdbViewer: an environment for comparative protein modeling. Electrophoresis 18:2714-2723

    Article  CAS  PubMed  Google Scholar 

  • Hales LM, Gumport RI, Gardner JF (1996) Examining the contribution of a dA + dT element to the conformation of Escherichia coli integration host factor-DNA complexes. Nucleic Acids Res 24:1780-1786

    Article  CAS  PubMed  Google Scholar 

  • Haluzi H, Goitein D, Koby S, Mendelson I, Teff D, Mengeritsky G, Giladi H, Oppenheim AB (1991) Genes coding for integration host factor are conserved in Gram-negative bacteria. J Bacteriol 173:6297-6299

    CAS  PubMed  Google Scholar 

  • Hoover TR, Santero E, Porter S, Kustu S (1990) The integration host factor stimulates interaction of RNA polymerase with NIFA, the transcriptional activator for nitrogen fixation operons. Cell 63:11-22

    Article  CAS  PubMed  Google Scholar 

  • Kamashev D, Balandina A, Rouvière-Yaniv J (1999) The binding motif recognized by HU on both nicked and cruciform DNA. EMBO J 18:5434-5444

    Article  CAS  PubMed  Google Scholar 

  • Kamashev D, Balandina A, Mazur AK, Arimondo PB, Rouvière-Yaniv J (2008) HU binds and folds single-stranded DNA. Nucleic Acids Res 36:1026-1036

    Article  CAS  PubMed  Google Scholar 

  • Koh J, Saecker RM, Record MT (2008) DNA binding mode transitions of Escherichia coli HU (alphabeta): evidence for formation of a bent DNA-protein complex on intact, linear duplex DNA. J Mol Biol 383:324-346

    Google Scholar 

  • Kuznetsov SV, Sugimura S, Vivas P, Crothers DM, Ansari A (2006) Direct observation of DNA bending/unbending kinetics in complex with DNA-bending protein IHF. Proc Natl Acad Sci USA 103:18515-18520

    Article  CAS  PubMed  Google Scholar 

  • Lee EC, MacWilliams MP, Gumport RI, Gardner JF (1991) Genetic analysis of Escherichia coli integration host factor interactions with its bacteriophage lambda H′ recognition site. J Bacteriol 173:609-617

    CAS  PubMed  Google Scholar 

  • Lee EC, Hales LM, Gumport RI, Gardner JF (1992) The isolation and characterization of mutants of the integration host factor (IHF) of Escherichia coli with altered, expanded DNA-binding specificities. EMBO J 11:305-313

    CAS  PubMed  Google Scholar 

  • Lynch TW, Read EK, Mattis AN, Gardner JF, Rice PA (2003) Integration host factor: putting a twist on protein-DNA recognition. J Mol Biol 330:493-502

    Article  CAS  PubMed  Google Scholar 

  • Nash HA (1996) The HU and IHF proteins: accessory factors for complex protein-DNA assemblies. In: Lin EEC, Lynch AS (eds) Regulation of gene expression in Escherichia coli. R.G. Landes Company, Austin, TX, pp 149-179

    Google Scholar 

  • Nash HA, Robertson CA (1981) Purification and properties of the Escherichia coli protein factor required for lambda integrative recombination. J Biol Chem 256:9246-9253

    CAS  PubMed  Google Scholar 

  • Ochman H, Davalos LM (2006) The nature and dynamics of bacterial genomes. Science 311:1730-1733

    Google Scholar 

  • Olson WK, Gorin AA, Lu XJ, Hock LM, Zhurkin VB (1998) DNA sequence-dependent deformability deduced from protein-DNA crystal complexes. Proc Natl Acad Sci USA 95:11163-11168

    Article  CAS  PubMed  Google Scholar 

  • Painbeni E, Caroff M, Rouvière-Yaniv J (1997) Alterations of the outer membrane composition in Escherichia coli lacking the histone-like protein HU. Proc Natl Acad Sci USA 94:6712-6717

    Article  CAS  PubMed  Google Scholar 

  • Parekh BS, Hatfield GW (1996) Transcriptional activation by protein-induced DNA bending: evidence for a DNA structural transmission model. Proc Natl Acad Sci USA 93:1173-1177

    Article  CAS  PubMed  Google Scholar 

  • Pearl FM, Martin N, Bray JE, Buchan DW, Harrison AP, Lee D, Reeves GA, Shepherd AJ, Sillitoe I, Todd AE, Thornton JM, Orengo CA (2001) A rapid classification protocol for the CATH Domain Database to support structural genomics. Nucleic Acids Res 29:223-227

    Article  CAS  PubMed  Google Scholar 

  • Pérez-Martín J, de Lorenzo V (1996a) In vitro activities of an N-terminal truncated form of XylR, a s54-dependent transcriptional activator of Pseudomas putida. J Mol Biol 258:575-587

    Google Scholar 

  • Pérez-Martín J, de Lorenzo V (1996b) Physical and functional analysis of the prokaryotic enhancer of the s54-promoters of the TOL plasmid of Pseudomonas putida. J Mol Biol 258:562-574

    Article  PubMed  Google Scholar 

  • Pérez-Martín J, Timmis KN, de Lorenzo V (1994) Co-regulation by bent DNA. Functional substitutions of the integration host factor site at s54-dependent promoter Pu of the upper-TOL operon by intrinsically curved sequences. J Biol Chem 269:22657-22662

    PubMed  Google Scholar 

  • Rice PA (1997) Making DNA do a U-turn: IHF and related proteins. Curr Opin Struct Biol 7:86-93

    Article  CAS  PubMed  Google Scholar 

  • Rice PA, Yang S, Mizuuchi K, Nash HA (1996) Crystal structure of an IHF-DNA complex: a protein-induced DNA U-turn. Cell 87:1295-1306

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez R, Chinea G, Lopez N, Pons T, Vriend G (1998) Homology modeling, model and software evaluation: three related resources. Bioinformatics 14:523-528

    Article  CAS  PubMed  Google Scholar 

  • Schmid MB (1990) More than just “histone-like” proteins. Cell 63:451-453

    Article  CAS  PubMed  Google Scholar 

  • Senear DF, Tretyachenko-Ladokhina V, Opel ML, Aeling KA, Hatfield GW, Franklin LM, Darlington RC, Alexander Ross JB (2007) Pressure dissociation of integration host factor-DNA complexes reveals flexibility-dependent structural variation at the protein-DNA interface. Nucleic Acids Res 35:1761-1772

    Article  CAS  PubMed  Google Scholar 

  • Steffen NR, Murphy SD, Tolleri L, Hatfield GW, Lathrop RH (2002) DNA sequence and structure: direct and indirect recognition in protein-DNA binding. Bioinformatics 18:S22-S30

    PubMed  Google Scholar 

  • Stonehouse E, Kovacikova G, Taylor RK, Skorupski K (2008) Integration host factor positively regulates virulence gene expression in Vibrio cholerae. J Bacteriol 190:4736-4748

    Article  CAS  PubMed  Google Scholar 

  • Suzuki M, Yagi N (1995) Stereochemical basis of DNA bending by transcription factors. Nucleic Acids Res 23:2083-2091

    Article  CAS  PubMed  Google Scholar 

  • Swinger KK, Rice PA (2004) IHF and HU: flexible architects of bent DNA. Curr Opin Struct Biol 14:28-35

    Article  CAS  PubMed  Google Scholar 

  • Swinger KK, Rice PA (2007) Structure-based analysis of HU-DNA binding. J Mol Biol 365:1005-1016

    Article  CAS  PubMed  Google Scholar 

  • Swinger KK, Lemberg KM, Zhang Y, Rice PA (2003) Flexible DNA bending in HU-DNA cocrystal structures. EMBO J 22:3749-3760

    Article  CAS  PubMed  Google Scholar 

  • Tanaka I, Appelt K, Dijk J, White SW, Wilson KS (1984) 3-A resolution structure of a protein with histone-like properties in prokaryotes. Nature 310:376-381

    Article  CAS  PubMed  Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673-4680

    Article  CAS  PubMed  Google Scholar 

  • Ussery D, Larsen TS, Wilkes KT, Friis C, Worning P, Krogh A, Brunak S (2001) Genome organisation and chromatin structure in Escherichia coli. Biochimie 83:201-212

    Article  CAS  PubMed  Google Scholar 

  • Valls M, Buckle M, de Lorenzo V (2002) In vivo UV laser footprinting of the Pseudomonas putida s 54Pu promoter reveals that integration host factor couples transcriptional activity to growth phase. J Biol Chem 277:2169-2175

    Article  CAS  PubMed  Google Scholar 

  • Vander Meulen KA, Saecker RM, Record MT Jr (2008) Formation of a wrapped DNA-protein interface: experimental characterization and analysis of the large contributions of ions and water to the thermodynamics of binding IHF to H′ DNA. J Mol Biol 377:9-27

    Article  CAS  PubMed  Google Scholar 

  • Vivas P, Kuznetsov SV, Ansari A (2008) New insights into the transition pathway from nonspecific to specific complex of DNA with Escherichia coli integration host factor. J Phys Chem B 112:5997-6007

    Article  CAS  PubMed  Google Scholar 

  • Wang S, Cosstick R, Gardner JF, Gumport RI (1995) The specific binding of Escherichia coli integration host factor involves both major and minor grooves of DNA. Biochemistry 34:13082-13090

    Article  CAS  PubMed  Google Scholar 

  • Wedel A, Weiss DS, Popham D, Dröge P, Kustu S (1990) A bacterial enhancer functions to tether a transcriptional activator near a promoter. Science 248:486-490

    Article  CAS  PubMed  Google Scholar 

  • Weisberg RA, Freundlich M, Friedman D, Gardner J, Goosen N, Nash H, Oppenheim A, Rouvière-Yaniv J (1996) Nomenclature of the genes encoding IHF. Mol Microbiol 19:642

    Article  CAS  PubMed  Google Scholar 

  • Yang CC, Nash HA (1989) The interaction of E. coli IHF protein with its specific binding sites. Cell 57:869-880

    Article  CAS  PubMed  Google Scholar 

  • Yang SW, Nash HA (1995) Comparison of protein binding to DNA in vivo and in vitro: defining an effective intracellular target. EMBO J 14:6292-6300

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The work made in Authors’ Laboratory was supported by research grants of the Ministry of Science and Innovation, by contracts of the 6th Framework Programme of the EU and by Funds of the Autonomous Community of Madrid.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Víctor de Lorenzo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Muñoz, A., Valls, M., de Lorenzo, V. (2010). Extreme DNA Bending: Molecular Basis of the Regulatory Breadth of IHF. In: Dame, R.T., Dorman, C.J. (eds) Bacterial Chromatin. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3473-1_16

Download citation

Publish with us

Policies and ethics