Skip to main content

The Topology and Organization of Eukaryotic Chromatin

  • Chapter
Bacterial Chromatin

Abstract

In all organisms DNA is maintained in a highly compacted state complexed with abundant basic proteins. The extent of this compaction can range from ∼1,000-fold in the bacterial nucleoid to ∼10,000-fold in eukaryotic metaphase chromosomes. In addition to the necessity for compaction the genetic specification function of DNA also requires that the appropriate encoded information be accessible for transcription. The dual requirements of compaction and selective accessibility imply that the complex of DNA and abundant basic proteins, defined here generally as chromatin, must possess a high degree of structural organisation and that the regulation of transcription at the level of the gene may involve substantial structural transitions. In this article we summarise the current understanding of the organisation of eukaryotic chromatin and discuss the extent to which the organisational principles are also apparent in prokaryotic chromatin.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aki T, Choy HE, Adhya S (1996) Histone-like protein HU as a specific transcriptional regulator: co-factor role in repression of gal transcription by GAL repressor. Genes Cells 1:179-188

    Article  CAS  PubMed  Google Scholar 

  • Albert I, Mavrich TN, Tomsho LP, Qi J, Zanton SJ, Schuster SC, Pugh BF (2007) Translational and rotational settings of H2A.Z nucleosomes across the Saccharomyces cerevisiae genome. Nature 446:572-576

    Article  CAS  PubMed  Google Scholar 

  • Athey BD, Smith MF, Rankert DA, Williams SP, Langmore JP (1990) The diameters of frozen-hydrated chromatin fibers increase with DNA linker length: evidence in support of variable diameter models for chromatin. J Cell Biol 111:795-806

    Article  CAS  PubMed  Google Scholar 

  • Bao Y, Konesky K, Park YJ, Rosu S, Dyer PN, Rangasamy D, Tremethick DJ, Laybourn PJ, Luger K (2004) Nucleosomes containing the histone variant H2A.Bbd organize only 118 base pairs of DNA. EMBO J 23:3314-3324

    Google Scholar 

  • Bassett A, Cooper S, Wu C, Travers A (2009) The folding and unfolding of eukaryotic chromatin. Curr Opin Genet Dev 19:159-165

    Article  CAS  PubMed  Google Scholar 

  • Bates DL, Butler PJG, Pearson EC, Thomas JO (1981) Stability of the higher-order structure of chicken-erythrocyte chromatin in solution. Eur J Biochem 119:469-476

    Article  CAS  PubMed  Google Scholar 

  • Bauer WR, Hayes JJ, White JH, Wolffe AP (1994) Nucleosome structural changes due to acetylation. J Mol Biol 236:685-690

    Article  CAS  PubMed  Google Scholar 

  • Becker NA, Kahn JD, Maher LJ 3rd (2005) Effects of nucleoid proteins on DNA repression loop formation in Escherichia coli. J Mol Biol 349:716-730

    Article  CAS  PubMed  Google Scholar 

  • Bellomy GR, Mossing MC, Record MT Jr (1988) Physical properties of DNA in vivo as probed by the length dependence of the lac operator looping process. Biochemistry 27:3900-3906

    Article  CAS  PubMed  Google Scholar 

  • Bertin A, Leforestier A, Durand D, Livolant F (2004) Role of histone tails in the conformation and interactions of nucleosome core particles. Biochemistry 43:4773-4780

    Article  CAS  PubMed  Google Scholar 

  • Bétermier M, Galas DJ, Chandler M (1994) Interaction of Fis protein with DNA: bending and specificity of binding. Biochimie 76:958-967

    Article  PubMed  Google Scholar 

  • Bliska JB, Benjamin HW, Cozzarelli NR (1991) Mechanism of Tn3 resolvase recombination in vivo. J Biol Chem 266:2041-2047

    CAS  PubMed  Google Scholar 

  • Boles TC, White JH, Cozzarelli NR (1990) Structure of plectonemically supercoiled DNA. J Mol Biol 213:931-951

    Article  CAS  PubMed  Google Scholar 

  • Bordas J, Perez-Grau L, Koch MH, Vega MC, Nave C (1986) The superstructure of chromatin and its condensation mechanism I. Synchrotron radiation X-ray scattering results. Eur Biophys J 13:157-173

    Article  CAS  PubMed  Google Scholar 

  • Bouffartigues E, Buckle M, Badaut C, Travers A, Rimsky S (2007) H-NS cooperative binding to high-affinity sites in a regulatory element results in transcriptional silencing. Nat Struct Mol Biol 14:441-448

    Article  CAS  PubMed  Google Scholar 

  • Bustin M (2001a) Revised nomenclature for high mobility group (HMG) chromosomal proteins. Trends Biochem Sci 26:152-153

    Article  CAS  PubMed  Google Scholar 

  • Bustin M (2001b) Chromatin unfolding and activation by HMGN chromosomal proteins. Trends Biochem Sci 26:431-437

    Article  CAS  PubMed  Google Scholar 

  • Butler PJG, Thomas JO (1980) Changes in chromatin folding in solution. J Mol Biol 140:505-529

    Article  CAS  PubMed  Google Scholar 

  • Cairney J, Booth IR, Higgins CF (1985) Osmoregulation of gene expression in Salmonella typhimurium: proU encodes an osmotically induced betaine transport system. J Bacteriol 164:1224-1232

    CAS  PubMed  Google Scholar 

  • Caserta M, Agricola E, Churcher M, Hiriart E, Verdone L, Di Mauro E, Travers AA (2009) A translational signature for nucleosome positioning in vivo. Nucleic Acids Res 37:5309-5321

    Google Scholar 

  • Cheung KJ, Badarinarayana V, Selinger DW, Janse D, Church GM (2003) A microarray-based antibiotic screen identifies a regulatory role for supercoiling in the osmotic stress response of Escherichia coli. Genome Res 13:206-215

    Article  CAS  PubMed  Google Scholar 

  • Compton JL, Bellard M, Chambon P (1976) Biochemical evidence of variability in the DNA repeat length in the chromatin of higher eukaryotes. Proc Natl Acad Sci USA 73:4382-4386

    Article  CAS  PubMed  Google Scholar 

  • Costanzo G, Di Mauro E, Negri R, Pereira G, Hollenberg C (1995) Multiple overlapping positions of nucleosomes with single in vivo rotational setting in the Hansenula polymorpha RNA polymerase II MOX promoter. J Biol Chem 270:11091-11097

    Article  CAS  PubMed  Google Scholar 

  • Dame RT, Wyman C, Goosen N (2000) H-NS mediated compaction of DNA visualised by atomic force microscopy. Nucleic Acids Res 28:3504-3510

    Article  CAS  PubMed  Google Scholar 

  • Dorigo B, Schalch T, Bystricky K, Richmond TJ (2003) Chromatin fiber folding: requirement for the histone H4 N-terminal tail. J Mol Biol 327:85-96

    Article  CAS  PubMed  Google Scholar 

  • Dorigo B, Schalch T, Kulangara A, Duda S, Schroeder RR, Richmond TJ (2004) Nucleosome arrays reveal the two-start organization of the chromatin fiber. Science 306:1571-1573

    Article  CAS  PubMed  Google Scholar 

  • Dorman CJ (1996) Flexible response: DNA supercoiling, transcription and bacterial adaptation to environmental stress. Trends Microbiol 4:214-216

    Article  CAS  PubMed  Google Scholar 

  • Doyen CM, Montel F, Gautier T, Menoni H, Claudet C, Delacour-Larose M, Angelov D, Hamiche A, Bednar J, Faivre-Moskalenko C, Bouvet P, Dimitrov S (2006) Dissection of the unusual structural and functional properties of the variant H2A.Bbd nucleosome. EMBO J 25:4234-4244

    Article  CAS  PubMed  Google Scholar 

  • Drew HR, Travers AA (1985) DNA bending and its relation to nucleosome positioning. J Mol Biol 186:773-790

    Article  CAS  PubMed  Google Scholar 

  • Durrin LK, Mann RK, Kayne PS, Grunstein M (1992) Yeast histone H4 N-terminal sequence is required for promoter activation in vivo. Cell 65:1023-1031

    Article  Google Scholar 

  • Eltsov M, Maclellan KM, Maeshima K, Frangakis AS, Dubochet J (2008) Analysis of cryo-electron microscopy images does not support the existence of 30-nm chromatin fibers in mitotic chromosomes in situ. Proc Natl Acad Sci USA 105:19732-19737

    Article  CAS  PubMed  Google Scholar 

  • Felsenfeld G, McGhee JD (1986) Structure of the 30 nm chromatin fiber. Cell 44:375-379

    Article  CAS  PubMed  Google Scholar 

  • Finch JT, Klug A (1976) Solenoidal model for superstructure in chromatin. Proc Natl Acad Sci USA 73:1897-1901

    Article  CAS  PubMed  Google Scholar 

  • Finch JT, Lutter LC, Rhodes D, Brown RS, Rushton B, Levitt M, Klug A (1976) Structure of nucleosome core particles of chromatin. Nature 269:29-36

    Article  Google Scholar 

  • Gautier T, Abbott DW, Molla A, Verdel A, Ausio J, Dimitrov S (2004) Histone variant H2ABbd confers lower stability to the nucleosome. EMBO Rep 5:715-720

    Article  CAS  PubMed  Google Scholar 

  • Gencheva M, Boa S, Fraser R, Simmen MW, Whitelaw CBA, Allan J (2006) In vitro and in vivo nucleosome positioning on the ovine β-lactoglobulin gene are related. J Mol Biol 361:216-230

    Article  CAS  PubMed  Google Scholar 

  • Gerchman SE, Ramakrishnan V (1987) Chromatin higher-order structure studied by neutron scattering and scanning transmission electron microscopy. Proc Natl Acad Sci USA 84:7802-7806

    Article  CAS  PubMed  Google Scholar 

  • Germond JE, Bellard M, Oudet P, Chambon P (1976) Stability of nucleosomes in native and reconstituted chromatins. Nucleic Acids Res 3:3173-3192

    CAS  PubMed  Google Scholar 

  • Ghirlando R, Felsenfeld G (2008) Hydrodynamic studies on defined heterochromatin fragments support a 30-nm fiber having six nucleosomes per turn. J Mol Biol 376:1417-1425

    Article  CAS  PubMed  Google Scholar 

  • Ghirlando R, Litt MD, Prioleau MN, Recillas-Targa F, Felsenfeld G (2004) Physical properties of a genomic condensed chromatin fragment. J Mol Biol 336:597-605

    Article  CAS  PubMed  Google Scholar 

  • Gralla JD, Vargas DR (2006) Potassium glutamate as a transcriptional inhibitor during bacterial osmoregulation. EMBO J 25:1515-1521

    Article  CAS  PubMed  Google Scholar 

  • Guo F, Adhya S (2007) Spiral structure of Escherichia coli HUαβ provides foundation for DNA supercoiling. Proc Natl Acad Sci USA 104:4309-4314

    Article  CAS  PubMed  Google Scholar 

  • Higgins CF, Dorman CJ, Stirling DA, Waddell L, Booth IR, May G, Bremer E (1988) A physiological role for DNA supercoiling in the osmotic regulation of gene expression in S. typhimurium and E. coli. Cell 52:569-584

    Article  CAS  PubMed  Google Scholar 

  • Hizume K, Yoshimura SH, Takeyasu K (2005) Linker histone H1 per se can induce three-dimensional folding of chromatin fiber. Biochemistry 44:12978-12989

    Article  CAS  PubMed  Google Scholar 

  • Hizume K, Nakai T, Araki S, Prieto E, Yoshikawa K, Takeyasu K (2009) Removal of histone tails from nucleosome dissects the physical mechanisms of salt-induced aggregation, linker histone H1-induced compaction, and 30-nm fiber formation of the nucleosome array. Ultramicroscopy epub March 19

    Google Scholar 

  • Hsieh CH, Griffith JD (1988) The terminus of SV40 DNA replication and transcription contains a sharp sequence-directed curve. Cell 52:535-544

    Article  CAS  PubMed  Google Scholar 

  • Izzo A, Kamieniarz K, Schneider R (2008) The histone H1 family: specific members, specific functions? Biol Chem 389:333-343

    Google Scholar 

  • Kan PY, Caterino TL, Hayes JJ (2009) The H4 tail domain participates in intra- and internucleosome interactions with protein and DNA during folding and oligomerization of nucleosome arrays. Mol Cell Biol 29:538-546

    Article  CAS  PubMed  Google Scholar 

  • Kar S, Edgar R, Adhya S (2005) Nucleoid remodeling by an altered HU protein: reorganization of the transcription program. Proc Natl Acad Sci USA 102:16397-16402

    Article  CAS  PubMed  Google Scholar 

  • Keller W, Müller U, Eicken I, Wendel I, Zentgraf H (1978) Biochemical and ultrastructural analysis of SV40 chromatin. Cold Spring Harb Symp Quant Biol 42:227-244

    CAS  PubMed  Google Scholar 

  • Kepper N, Foethke D, Stehr R, Wedemann G, Rippe K (2008) Nucleosome geometry and internucleosomal interactions control the chromatin fiber conformation. Biophys J 95:3692-3705

    Article  CAS  PubMed  Google Scholar 

  • Kim Y, McLaughlin N, Lindstrom K, Tsukiyama T, Clark DJ (2006) Activation of Saccharomyces cerevisiae HIS3 results in Gcn4p-dependent, SWI/SNF-dependent mobilization of nucleosomes over the entire gene. Mol Cell Biol 26:8607-8622

    Article  CAS  PubMed  Google Scholar 

  • Kireeva N, Lakonishok M, Kireev I, Hirano T, Belmont AS (2004) Visualization of early chromosome condensation: a hierarchical folding, axial glue model of chromosome structure. J Cell Biol 166:775-785

    Article  CAS  PubMed  Google Scholar 

  • Kobryn K, Lavoie BD, Chaconas G (1999) Supercoiling-dependent site-specific binding of HU to naked Mu DNA. J Mol Biol 289:777-784

    Article  CAS  PubMed  Google Scholar 

  • Kornberg R (1981) The location of nucleosomes in chromatin: specific or statistical. Nature 292:279-280

    Article  Google Scholar 

  • Kornberg RD, Stryer L (1988) Statistical distributions of nucleosomes: nonrandom locations by a stochastic mechanism. Nucleic Acids Res 16:6677-6689

    Article  CAS  PubMed  Google Scholar 

  • Krämer H, Niemöller M, Amouyal M, Revet B, von Wilcken-Bergmann B, Müller-Hill B (1987) lac repressor forms loops with linear DNA carrying two suitably spaced lac operators. EMBO J 6:1481-1491

    PubMed  Google Scholar 

  • Kruithof M, Chien FT, Routh A, Logie C, Rhodes D, van Noort J (2009) Single-molecule force spectroscopy reveals a highly compliant helical folding for the 30-nm chromatin fiber. Nat Struct Mol Biol 16:534-540

    Article  CAS  PubMed  Google Scholar 

  • Lang B, Blot N, Bouffartigues E, Buckle M, Geertz M, Gualerzi CO, Mavathur R, Muskhelishvili G, Pon CL, Rimsky S, Stella S, Babu MM, Travers A (2007) High-affinity DNA binding sites for H-NS provide a molecular basis for selective silencing within proteobacterial genomes. Nucleic Acids Res 35:6330-6337

    Article  CAS  PubMed  Google Scholar 

  • Lazarus LR, Travers AA (1993) The Escherichia coli FIS protein is not required for the activation of tyrT transcription on entry into exponential growth. EMBO J 12:2483-2494

    CAS  PubMed  Google Scholar 

  • Lee DH, Schleif RF (1989) In vivo DNA loops inaraCBAD: size limits and helical repeat. Proc Natl Acad Sci USA 86:476-480

    Article  CAS  PubMed  Google Scholar 

  • Lee W, Tillo D, Bray N, Morse RH, Davis RW, Hughes TR, Nislow C (2007) A high-resolution atlas of nucleosome occupancy in yeast. Nat Genet 39:1235-1244

    Article  CAS  PubMed  Google Scholar 

  • Lewis M, Chang G, Horton NC, Kercher MA, Pace HC, Schumacher MA, Brennan RG, Lu P (1996) Crystal structure of the lactose operon repressor and its complexes with DNA and inducer. Science 271:1247-1254

    Article  CAS  PubMed  Google Scholar 

  • Lu X, Simon MD, Chodaparambil JV, Hansen JC, Shokat KM, Luger K (2008) The effect of H3K79 dimethylation and H4K20 trimethylation on nucleosome and chromatin structure. Nat Struct Mol Biol 15:1122-1124

    Article  CAS  PubMed  Google Scholar 

  • Luger K, Mäder AW, Richmond RK, Sargent DF, Richmond TJ (1997) Crystal structure of the nucleosome core particle at 2.8 Å resolution. Nature 389:251-260

    Article  CAS  PubMed  Google Scholar 

  • Maurer S, Fritz J, Muskhelishvili G, Travers A (2006) RNA polymerase and an activator form discrete subcomplexes in a transcription initiation complex. EMBO J 25:3784-3790

    Article  CAS  PubMed  Google Scholar 

  • Maurer S, Fritz J, Muskhelishvili G (2009) A systematic in vitro study of nucleoprotein complexes formed by bacterial nucleoid associated proteins revealing novel types of DNA organization. J Mol Biol 387:1261-1276

    Article  CAS  PubMed  Google Scholar 

  • Mavrich TN, Ioshikhes IP, Venters BJ, Jiang C, Tomsho LP, Qi J, Schuster SC, Albert I, Pugh BF (2008) A barrier nucleosome model for statistical positioning of nucleosomes throughout the yeast genome. Genome Res 18:1073-1083

    Article  CAS  PubMed  Google Scholar 

  • McGhee JD, Nickol JM, Felsenfeld G, Rau DC (1983) Histone hyperacetylation has little effect on the higher order folding of chromatin. Nucleic Acids Res 11:4065-4075

    Article  CAS  PubMed  Google Scholar 

  • Muskhelishvili G, Travers A (2009) Intrinsic in vivo modulators: negative supercoiling and the constituents of the bacterial nucleoid. In: Buc H, Strick T (eds) RNA polymerases as molecular motors. RSC, Cambridge, pp 69-95

    Chapter  Google Scholar 

  • Muskhelishvili G, Travers AA, Heumann H, Kahmann R (1995) FIS and RNA polymerase holoenzyme form a specific nucleoprotein complex at a stable RNA promoter. EMBO J 14:1446-1452

    CAS  PubMed  Google Scholar 

  • Navarre WW, Porwollik S, Wang Y, McClelland M, Rosen H, Libby SJ, Fang FC (2006) Selective silencing of foreign DNA with low GC content by the H-NS protein in Salmonella. Science 313:236-238

    Article  CAS  PubMed  Google Scholar 

  • Nishioka K, Rice JC, Sarma K, Erdjument-Bromage H, Werner J, Wang Y, Chuikov S, Valenzuela P, Tempst P, Steward R, Lis JT, Allis CD, Reinberg D (2002) PR-Set7 is a nucleosome-specific methyltransferase that modifies lysine 20 of histone H4 and is associated with silent chromatin. Mol Cell 9:1201-1213

    Article  CAS  PubMed  Google Scholar 

  • Norton VG, Imai BS, Yau P, Bradbury EM (1989) Histone acetylation reduces nucleosome core particle linking number change. Cell 57:449-457

    Article  CAS  PubMed  Google Scholar 

  • Norton VG, Marvin KW, Yau P, Bradbury EM (1990) Nucleosome linking number change controlled by acetylation of histones H3 and H4. J Biol Chem 265:19848-19852

    CAS  PubMed  Google Scholar 

  • Oberto J, Nabti S, Jooste V, Mignot H, Rouvière-Yaniv J (2009) The HU regulon is composed of genes responding to anaerobiosis, acid stress, high osmolarity and SOS induction. PLoS ONE 4:e4367

    Article  PubMed  CAS  Google Scholar 

  • Olson WK, Gorin AA, Lu XJ, Hock LM, Zhurkin VB (1998) DNA sequence-dependent deformability deduced from protein-DNA crystal complexes. Proc Natl Acad Sci USA 95:11163-11168

    Article  CAS  PubMed  Google Scholar 

  • Paull TT, Johnson RC (1995) DNA looping by Saccharomyces cerevisiae high mobility group proteins NHP6A/B. Consequences for nucleoprotein complex assembly and chromatin condensation. J Biol Chem 270:8744-8754

    Article  CAS  PubMed  Google Scholar 

  • Pearson EC, Butler PJG, Thomas JO (1983) Higher-order structure of nucleosome oligomers from short-repeat chromatin. EMBO J 2:1367-1372

    CAS  PubMed  Google Scholar 

  • Peck LJ, Wang JC (1981) Sequence dependence of the helical repeat of DNA in solution. Nature 292:375-378

    Article  CAS  PubMed  Google Scholar 

  • Pehrson JR (1995) Probing the conformation of nucleosome linker DNA in situ with pyrimidine dimer formation. J Biol Chem 270:22440-22444

    CAS  PubMed  Google Scholar 

  • Pemberton IK, Muskhelishvili G, Travers AA, Buckle M (2002) FIS modulates the kinetics of successive interactions of RNA polymerase with the core and upstream regions of the tyrT promoter. J Mol Biol 318:651-663

    Article  CAS  PubMed  Google Scholar 

  • Piña B, Brüggemeier U, Beato M (1990a) Nucleosome positioning modulates accessibility of regulatory proteins to the mouse mammary tumor virus promoter. Cell 60:719-731

    Article  PubMed  Google Scholar 

  • Piña B, Truss M, Ohlenbusch H, Postma J, Beato M (1990b) DNA rotational positioning in a regulatory nucleosome is determined by base sequence. An algorithm to model the preferred superhelix. Nucleic Acids Res 18:6981-6987

    Article  PubMed  Google Scholar 

  • Pisano S, Pascucci E, Cacchione S, De Santis P, Savino M (2006) AFM imaging and theoretical modeling studies of sequence-dependent nucleosome positioning. Biophys Chem 124:81-89

    Article  CAS  PubMed  Google Scholar 

  • Pul U, Wurm R, Wagner R (2007) The role of LRP and H-NS in transcription regulation: involvement of synergism, allostery and macromolecular crowding. J Mol Biol 366:900-915

    Article  CAS  PubMed  Google Scholar 

  • Ragab A, Travers A (2003) HMG-D and histone H1 alter the local accessibility of nucleosomal DNA. Nucleic Acids Res 31:7083-7089

    Article  CAS  PubMed  Google Scholar 

  • Richard-Foy H, Hager GL (1987) Sequence-specific positioning of nucleosomes over the steroid-inducible MMTV promoter. EMBO J 6:2321-2328

    CAS  PubMed  Google Scholar 

  • Robinson PJJ (2005) Reconstitution, folding and structure of the ‘30nm’ chromatin fibre. Ph.D. thesis, University of Cambridge, Cambridge, UK

    Google Scholar 

  • Robinson PJJ, Rhodes D (2006) Structure of the ‘30 nm’ chromatin fibre: a key role for the linker histone. Curr Opin Struct Biol 16:336-343

    Article  CAS  PubMed  Google Scholar 

  • Robinson PJJ, Fairall L, Huynh VA, Rhodes D (2006) EM measurements define the dimensions of the “30-nm” chromatin fiber: evidence for a compact, interdigitated structure. Proc Natl Acad Sci USA 103:6506-6511

    Article  CAS  PubMed  Google Scholar 

  • Robinson PJJ, An W, Routh A, Martino F, Chapman L, Roeder RG, Rhodes D (2008) 30 nm chromatin fibre decompaction requires both H4-K16 acetylation and linker histone eviction. J Mol Biol 381:816-825

    Article  CAS  PubMed  Google Scholar 

  • Routh A, Sandin S, Rhodes D (2008) Nucleosome repeat length and linker histone stoichiometry determine chromatin fiber structure. Proc Natl Acad Sci USA 105:8872-8877

    Article  CAS  PubMed  Google Scholar 

  • Rouvière-Yaniv J, Yaniv M, Germond JE (1979) E. coli DNA binding protein HU forms nucleosomelike structure with circular double-stranded DNA. Cell 17:265-274

    Article  PubMed  Google Scholar 

  • Rydberg B, Holley WR, Mian IS, Chatterjee A (1998) Chromatin conformation in living cells: support for a zig-zag model of the 30 nm chromatin fiber. J Mol Biol 284:71-84

    Article  CAS  PubMed  Google Scholar 

  • Satchwell SC, Drew HR, Travers AA (1986) Sequence periodicities in chicken nucleosome core DNA. J Mol Biol 191:659-675

    Article  CAS  PubMed  Google Scholar 

  • Saviola B, Seabold PR, Schleif RF (1998) DNA bending by AraC: a negative mutant. J Bacteriol 180:4227-4232

    CAS  PubMed  Google Scholar 

  • Schalch T, Duda S, Sargent DF, Richmond TJ (2005) X-ray structure of a tetranucleosome and its implications for the chromatin fibre. Nature 436:138-141

    Article  CAS  PubMed  Google Scholar 

  • Schneider R, Lurz R, Lüder G, Tolksdorf C, Travers A, Muskhelishvili G (2001) An architectural role of the Escherichia coli protein FIS in organising DNA. Nucl Acids Res 29:5107-5114

    Article  CAS  PubMed  Google Scholar 

  • Segal E, Fondufe-Mittendorf Y, Chen L, Thåström A, Field Y, Moore IK, Wang JP, Widom J (2006) A genomic code for nucleosome positioning. Nature 442:772-778

    Article  CAS  PubMed  Google Scholar 

  • Shen CH, Clark DJ (2001) DNA sequence plays a major role in determining nucleosome positions in yeast CUP1 chromatin. J Biol Chem 276:35209-35216

    Article  CAS  PubMed  Google Scholar 

  • Shimizu M, Roth SY, Szent-Gyorgyi C, Simpson RT (1991) Nucleosomes are positioned with base pair precision adjacent to the alpha 2 operator in Saccharomyces cerevisiae. EMBO J 10:3033-3041

    CAS  PubMed  Google Scholar 

  • Shogren-Knaak M, Ishii H, Sun JM, Pazin MJ, Davie JR, Peterson CL (2006) Histone H4-K16 acetylation controls chromatin structure and protein interactions. Science 311:844-847

    Article  CAS  PubMed  Google Scholar 

  • Shrader TE, Crothers DM (1989) Artificial nucleosome positioning sequences. Proc Natl Acad Sci USA 86:7418-7422

    Article  CAS  PubMed  Google Scholar 

  • Staynov DZ, Proykova YG (2008) Topological constraints on the possible structures of the 30 nm chromatin fibre. Chromosoma 117:67-76

    Article  CAS  PubMed  Google Scholar 

  • Swinger KK, Lemberg KM, Zhang Y, Rice PA (2003) Flexible DNA bending in HU-DNA cocrystal structures. EMBO J 22:3749-3760

    Article  CAS  PubMed  Google Scholar 

  • Tanaka S, Zatchej M, Thoma F (1992) Artificial nucleosome positioning sequences tested in yeast minichromosomes: a strong rotational setting is not sufficient to position nucleosomes in vivo. EMBO J 11:1187-1193

    CAS  PubMed  Google Scholar 

  • Thoma F, Koller T, Klug A (1979) Involvement of histone H1 in the organization of the nucleosome and of the salt-dependent superstructures of chromatin. J Cell Biol 83:403-427

    Article  CAS  PubMed  Google Scholar 

  • Thomas JO (1999) Histone H1: location and role. Curr Opin Cell Biol 11:312-317

    Article  CAS  PubMed  Google Scholar 

  • Thomas JO, Butler PJG (1980) Size-dependence of a stable higher-order structure of chromatin. J Mol Biol 144:89-93

    Article  CAS  PubMed  Google Scholar 

  • Thomas JO, Kornberg RD (1975) An octamer of histones in chromatin and free in solution. Proc Natl Acad Sci USA 72:2626-2630

    Article  CAS  PubMed  Google Scholar 

  • Thomas JO, Thompson RJ (1977) Variation in chromatin structure in two cell types from the same tissue: a short DNA repeat length in cerebral cortex neurons. Cell 10:633-640

    Article  CAS  PubMed  Google Scholar 

  • Thomas JO, Travers AA (2001) HMG1 and 2, and related ‘architectural’ DNA-binding proteins. Trends Biochem Sci 26:167-174

    Article  CAS  PubMed  Google Scholar 

  • Tóth KF, Knoch TA, Wachsmuth M, Frank-Stöhr M, Stöhr M, Bacher CP, Müller G, Rippe K (2004) Trichostatin A-induced histone acetylation causes decondensation of interphase chromatin. J Cell Sci 117:4277-4287

    Article  PubMed  CAS  Google Scholar 

  • Travers A (2007) DNA bending and nucleosome positioning. Trends Biochem Sci 12:108-112

    Google Scholar 

  • Travers AA (2005) Gene regulation by HMGA and HMGB chromosomal proteins and related architectural DNA-binding proteins. In: Ohyama T (ed) DNA conformation in transcription. Landes Bioscience, Georgetown, pp 147-158

    Google Scholar 

  • Travers A (2009) In: Benham CJ, Harvey S, Olson W, Sumners DW (eds) IMA volume 150: mathematics of DNA structure, function, and interactions. Springer Science and Business Media, New York, pp 321-330

    Google Scholar 

  • Travers A, Klug A (1987) The bending of DNA in nucleosomes and its wider implications. Philos Trans R Soc Lond B Biol Sci 317:5375-5361

    Google Scholar 

  • Travers A, Muskhelishvili G (2005a) DNA supercoiling - a global transcriptional regulator for enterobacterial growth? Nature Rev Microbiol 3:157-169

    Article  CAS  Google Scholar 

  • Travers A, Muskhelishvili G (2005b) Bacterial chromatin. Curr Opin Genet Dev 15:507-514

    Article  CAS  PubMed  Google Scholar 

  • Travers A, Muskhelishvili G (2007) A common topology for bacterial and eukaryotic transcription initiation? EMBO Rep 8:147-151

    Article  CAS  PubMed  Google Scholar 

  • Travers AA, Ner SS, Churchill MEA (1994) DNA chaperones: a solution to a persistence problem? Cell 77:167-169

    Article  CAS  PubMed  Google Scholar 

  • Travers A, Caserta M, Churcher M, Hiriart E, Di Mauro E (2009) Nucleosome positioning - what do we know? Mol. BioSystems doi:10.1039/B907227F

    Google Scholar 

  • Tse C, Sera T, Wolffe AP, Hansen JC (1998) Disruption of higher-order folding by core histone acetylation dramatically enhances transcription of nucleosomal arrays by RNA polymerase III. Mol Cell Biol 18:4629-4638

    CAS  PubMed  Google Scholar 

  • Tupper AE, Owen-Hughes TA, Ussery DW, Santos DS, Ferguson DJ, Sidebotham JM, Hinton JC, Higgins CF (1994) The chromatin-associated protein H-NS alters DNA topology in vitro. EMBO J 13:258-268

    CAS  PubMed  Google Scholar 

  • Urata Y, Parmelee SJ, Agard DA, Sedat JW (1995) A three-dimensional structural dissection of Drosophila polytene chromosomes. J Cell Biol 131:279-295

    Article  CAS  PubMed  Google Scholar 

  • Valouev A, Ichikawa J, Tonthat T, Stuart J, Ranade S, Peckham H, Zeng K, Malek JA, Costa G, McKernan K, Sidow A, Fire A, Johnson SM (2008) A high-resolution, nucleosome position map of C. elegans reveals a lack of universal sequence-dictated positioning. Genome Res 18:1051-1063

    Article  CAS  PubMed  Google Scholar 

  • Virstedt J, Berge T, Henderson RM, Waring MJ, Travers AA (2004) The influence of DNA stiffness upon nucleosome formation. J Struct Biol 148:66-85

    Article  CAS  PubMed  Google Scholar 

  • Wallrath LL, Lu Q, Granok H, Elgin SCR (1994) Architectural variations of inducible eukaryotic promoters: preset and remodeling chromatin structures. BioEssays 16:165-170

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Hayes JJ (2008) Acetylation mimics within individual core histone tail domains indicate distinct roles in regulating the stability of higher-order chromatin structure. Mol Cell Biol 28:227-236

    Article  CAS  PubMed  Google Scholar 

  • Weiss K, Simpson RT (1997) Cell type-specific chromatin organization of the region that governs directionality of yeast mating type switching. EMBO J 16:4352-4360

    Article  CAS  PubMed  Google Scholar 

  • Widom J (1986) Physicochemical studies of the folding of the 100 Å nucleosome filament into the 300 Å filament Cation dependence. J Mol Biol 190:411-424

    Article  CAS  PubMed  Google Scholar 

  • Widom J (2001) Role of DNA sequence in nucleosome stability and dynamics. Q Rev Biophys 34:269-324

    Article  CAS  PubMed  Google Scholar 

  • Widom J, Klug A (1985) Structure of the 300Å chromatin filament: X-ray diffraction from oriented samples. Cell 43:207-213

    Article  CAS  PubMed  Google Scholar 

  • Williams SP, Athey BD, Muglia LJ, Schappe RS, Gough AH, Langmore JP (1986) Chromatin fibers are left-handed double helices with diameter and mass per unit length that depend on linker length. Biophys J 49:233-248

    Article  CAS  PubMed  Google Scholar 

  • Wolf SG, Frenkiel D, Arad T, Finkel SE, Kolter R, Minsky A (1999) DNA protection by stress-induced biocrystallization. Nature 400:83-85

    Article  CAS  PubMed  Google Scholar 

  • Wolffe AP, Drew HR (1989) Initiation of transcription on nucleosomal templates. Proc Natl Acad Sci USA 86:9817-9821

    Article  CAS  PubMed  Google Scholar 

  • Wong H, Victor JM, Mozziconacci J (2007) An all-atom model of the chromatin fiber containing linker histones reveals a versatile structure tuned by the nucleosomal repeat length. PLoS ONE 2:e877

    Article  PubMed  CAS  Google Scholar 

  • Woodcock CL, Frado LL, Rattner JB (1984) The higher-order structure of chromatin: evidence for a helical ribbon arrangement. J Cell Biol 99:42-52

    Article  CAS  PubMed  Google Scholar 

  • Worcel A, Strogatz S, Riley D (1981) Structure of chromatin and the linking number of DNA. Proc Natl Acad Sci USA 78:1461-1465

    Article  CAS  PubMed  Google Scholar 

  • Wu C, Bassett A, Travers A (2007) A variable topology for the 30-nm chromatin fibre. EMBO Rep 8:1129-1134

    Article  CAS  PubMed  Google Scholar 

  • Zhou J, Fan JY, Rangasamy D, Tremethick DJ (2007) The nucleosome surface regulates chromatin compaction and couples it with transcriptional repression. Nat Struct Mol Biol 14:1070-1076

    Article  CAS  PubMed  Google Scholar 

  • Zivanovic Y, Goulet I, Revet B, Le Bret M, Prunell A (1988) Chromatin reconstitution on small DNA rings II. DNA supercoiling on the nucleosome. J Mol Biol 200:267-290

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr. Malcolm Buckle for incisive comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew Travers .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Travers, A., Muskhelishvili, G. (2010). The Topology and Organization of Eukaryotic Chromatin. In: Dame, R.T., Dorman, C.J. (eds) Bacterial Chromatin. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3473-1_11

Download citation

Publish with us

Policies and ethics