Skip to main content

Archaeal Chromatin Organization

  • Chapter
Bacterial Chromatin

Abstract

In the light microscope, archaea resemble bacteria, in that they are small, generally single-celled organisms devoid of overt subcellular organization. Their genomes (which range in size from 0.5 to ∼6 Mb) are found in condensed nucleoid structures, rather than within nuclei and so the archaea can be broadly classified as “prokaryotes”. As in bacteria, a complex variety of proteins appear to play roles in compacting archaeal nucleoid structures. However, despite the organisational similarity between bacterial and archaeal subcellular features, archaeal nucleoid-associated proteins have intriguing parallels with the proteins that shape eukaryotic chromatin. These similarities manifest themselves both at the physical level, in the form of the structural orthology of some eukaryotic and archaeal histone proteins, and at the conceptual level, in the role of covalent modifications in modulating the DNA binding mode of archaeal chromatin proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bailey KA, Marc F, Sandman K, Reeve JN (2002) Both DNA and histone fold sequences contribute to archaeal nucleosome stability. J Biol Chem 277:9293-9301

    Article  CAS  PubMed  Google Scholar 

  • Bell SD, Botting CH, Wardleworth BN, Jackson SP, White MF (2002) The interaction of Alba, a conserved archaeal, chromatin protein, with Sir2 and its regulation by acetylation. Science 296:148-151

    Article  CAS  PubMed  Google Scholar 

  • Brochier-Armanet C, Boussau B, Gribaldo S, Forterre P (2008) Mesophilic crenarchaeota: proposal for a third archaeal phylum, the Thaumarchaeota. Nat Rev Microbiol 6:245-252

    Article  CAS  PubMed  Google Scholar 

  • Dinger ME, Baillie GJ, Musgrave DR (2000) Growth phase-dependent expression and degradation of histones in the thermophilic archaeon Thermococcus zilligii. Mol Microbiol 36:876-885

    Article  CAS  PubMed  Google Scholar 

  • Edmondson SP, Shriver JW (2001) DNA-binding proteins Sac7d and Sso7d from Sulfolobus. In: Hyperthermophilic enzymes, Pt C, vol 334, pp 129-145

    Google Scholar 

  • Edmondson SP, Kahsai MA, Gupta R, Shriver JW (2004) Characterization of Sac10a, a hyperthermophile DNA-binding protein from Sulfolobus acidocaldarius. Biochemistry 43:13026-13036

    Article  CAS  PubMed  Google Scholar 

  • Elkins JG, Podar M, Graham DE, Makarova KS, Wolf Y, Randau L, Hedlund BP, Brochier-Armanet C, Kunin V, Anderson I, Lapidus A, Goltsman E, Barry K, Koonin EV, Hugenholtz P, Kyrpides N, Wanner G, Richardson P, Keller M, Stetter KO (2008) A korarchaeal genome reveals insights into the evolution of the Archaea. Proc Natl Acad Sci USA 105:8102-8107

    Article  CAS  PubMed  Google Scholar 

  • Fahrner RL, Cascio D, Lake JA, Slesarev A (2001) An ancestral nuclear protein assembly: crystal structure of the Methanopyrus kandleri histone. Protein Sci 10:2002-2007

    Article  CAS  PubMed  Google Scholar 

  • Gao YG, Su SY, Robinson H, Padmanabhan S, Lim L, McCrary BS, Edmondson SP, Shriver JW, Wang AHJ (1998) The crystal structure of the hyperthermophile chromosomal protein Sso7d bound to DNA. Nat Struct Biol 5:782-786

    Article  CAS  PubMed  Google Scholar 

  • Guo R, Xue H, Huang L (2003) Ssh10b, a conserved thermophilic archaeal protein, binds RNA in vivo. Mol Microbiol 50:1605-1615

    Article  CAS  PubMed  Google Scholar 

  • Guo L, Feng YG, Zhang ZF, Yao HW, Luo YM, Wang JF, Huang L (2008) Biochemical and structural characterization of Cren7, a novel chromatin protein conserved among Crenarchaea. Nucleic Acids Res 36:1129-1137

    Article  CAS  PubMed  Google Scholar 

  • Hardy CD, Martin PK (2008) Biochemical characterization of DNA-binding proteins from Pyrobaculum aerophilum and Aeropyrum pernix. Extremophiles 12:235-246

    Article  CAS  PubMed  Google Scholar 

  • Heinicke I, Muller J, Pittelkow M, Klein A (2004) Mutational analysis of genes encoding chromatin proteins in the archaeon Methanococcus voltae indicates their involvement in the regulation of gene expression. Mol Genet Genom 272:76-87

    CAS  Google Scholar 

  • Jacobs SA, Khorasanizadeh S (2002) Structure of HP1 chromodomain bound to a lysine 9-methylated histone H3 tail. Science 295:2080-2083

    Article  CAS  PubMed  Google Scholar 

  • Jelinska C, Conroy MJ, Craven CJ, Hounslow AM, Bullough PA, Waltho JP, Taylor GL, White MF (2005) Obligate heterodimerization of the archaeal Alba2 protein with Alba1 provides a mechanism for control of DNA packaging. Structure 13:963-971

    Article  CAS  PubMed  Google Scholar 

  • Kahsai MA, Vogler B, Clark AT, Edmondson SP, Shriver JW (2005) Solution structure, stability, and flexibility of Sso10a: A hyperthermophile coiled-coil DNA-binding protein. Biochemistry 44:2822-2832

    Article  CAS  PubMed  Google Scholar 

  • Krueger JK, McCrary BS, Wang AHJ, Shriver JW, Trewhella J, Edmondson SP (1999) The solution structure of the Sac7d/DNA complex: a small-angle X-ray scattering study. Biochemistry 38:10247-10255

    Article  CAS  PubMed  Google Scholar 

  • Le Cam E, Culard F, Larquet E, Delain E, Cognet JAH (1999) DNA bending induced by the archaebacterial histone-like protein MC1. J Mol Biol 285:1011-1021

    Article  CAS  PubMed  Google Scholar 

  • Li WT, Sandman K, Pereira SL, Reeve JN (2000) MJ1647, an open reading frame in the genome of the hyperthermophile Methanococcus jannaschii, encodes a very thermostable archaeal histone with a C-terminal extension. Extremophiles 4:43-51

    CAS  PubMed  Google Scholar 

  • Luo X, Schwarz-Linek U, Botting CH, Hensel R, Siebers B, White MF (2007) CC1, a novel crenarchaeal DNA binding protein. J Bacteriol 189:403-409

    Article  CAS  PubMed  Google Scholar 

  • Lurz R, Grote M, Dijk J, Reinhardt R, Dobrinski B (1986) Electron-microscopic study of DNA complexes with proteins from the archaebacterium Sulfolobus acidocaldarius. EMBO J 5:3715-3721

    CAS  PubMed  Google Scholar 

  • Manzur KL, Zhou MM (2005) An archaeal SET domain protein exhibits distinct lysine methyltransferase activity towards DNA-associated protein MCl-alpha. FEBS Lett 579:3859-3865

    Article  CAS  PubMed  Google Scholar 

  • Marsh VL, Peak-Chew SY, Bell SD (2005) Sir2 and the acetyltransferase, Pat, regulate the archaeal chromatin protein, Alba. J Biol Chem 280:21122-21128

    Article  CAS  PubMed  Google Scholar 

  • McAfee JG, Edmondson SP, Zegar I, Shriver JW (1996) Equilibrium DNA binding of Sac7d protein from the hyperthermophile Sulfolobus acidocaldarius: fluorescence and circular dichroism studies. Biochemistry 35:4034-4045

    Article  CAS  PubMed  Google Scholar 

  • Napoli A, Zivanovic Y, Bocs C, Buhler C, Rossi M, Forterre P, Ciaramella M (2002) DNA bending, compaction and negative supercoiling by the architectural protein Sso7d of Sulfolobus solfataricus. Nucleic Acids Res 30:2656-2662

    Article  CAS  PubMed  Google Scholar 

  • Napoli A, Valenti A, Salerno V, Nadal M, Garnier F, Rossi M, Ciaramella M (2004) Reverse gyrase recruitment to DNA after UV light irradiation in Sulfolobus solfataricus. J Biol Chem 279:33192-33198

    Article  CAS  PubMed  Google Scholar 

  • Nielsen PR, Nietlispach D, Mott HR, Callaghan J, Bannister A, Kouzarides T, Murzin AG, Murzina NV, Laue ED (2002) Structure of the HP1 chromodomain bound to histone H3 methylated at lysine 9. Nature 416:103-107

    Article  CAS  PubMed  Google Scholar 

  • Paquet F, Culard F, Barbault F, Maurizot JC, Lancelot G (2004) NMR solution structure of the archaebacterial chromosomal protein MC1 reveals a new protein fold. Biochemistry 43:14971-14978

    Article  CAS  PubMed  Google Scholar 

  • Reeve JN, Bailey KA, Li WT, Marc F, Sandman K, Soares DJ (2004) Archaeal histones: structures, stability and DNA binding. Biochem Soc Trans 32:227-230

    Article  CAS  PubMed  Google Scholar 

  • Richard DJ, Bell SD, White MF (2004) Physical and functional interaction of the archaeal single-stranded DNA-binding protein SSB with RNA polymerase. Nucleic Acids Res 32:1065-1074

    Article  CAS  PubMed  Google Scholar 

  • Sandman K, Reeve JN (2006) Archaeal histones and the origin of the histone fold. Curr Opin Microbiol 9:520-525

    Article  CAS  PubMed  Google Scholar 

  • Sandman K, Krzycki JA, Dobrinski B, Lurz R, Reeve JN (1990) Hmf, a DNA-binding protein isolated from the hyperthermophilic archaeon Methanothermus-Fervidus, is most closely related to histones. Proc Natl Acad Sci USA 87:5788-5791

    Article  CAS  PubMed  Google Scholar 

  • Sandman K, Grayling RA, Dobrinski B, Lurz R, Reeve JN (1994) Growth-phase-dependent synthesis of histones in the archaeon Methanothermus-Fervidus. Proc Natl Acad Sci USA 91:12624-12628

    Article  CAS  PubMed  Google Scholar 

  • Starai VJ, Escalante-Semerena JC (2004) Identification of the protein acetyltransferase (Pat) enzyme that acetylates acetyl-CoA synthetase in Salmonella enterica. J Mol Biol 340:1005-1012

    Article  CAS  PubMed  Google Scholar 

  • Starai VJ, Celic I, Cole RN, Boeke JD, Escalante-Semerena JC (2002) Sir2-dependent activation of acetyl-CoA synthetase by deacetylation of active lysine. Science 298:2390-2392

    Article  CAS  PubMed  Google Scholar 

  • Tashiro R, Wang AHJ, Sugiyama H (2006) Photoreactivation of DNA by an archaeal nucleoprotein Sso7d. Proc Natl Acad Sci USA 103:16655-16659

    Article  CAS  PubMed  Google Scholar 

  • Teyssier C, Toulme F, Touzel JP, Maurizot JC, Culard F (1996) Preferential binding of the archaebacterial histone-like MC1 protein to negatively supercoiled DNA minicircles. Biochemistry 35:7954-7958

    Article  CAS  PubMed  Google Scholar 

  • Toulme F, Lecam E, Teyssier C, Delain E, Sautiere P, Maurizot JC, Culard F (1995) Conformational changes of DNA minicircles upon the binding of the archaebacterial histone-like protein MC1. J Biol Chem 270:6286-6291

    Article  CAS  PubMed  Google Scholar 

  • Wardleworth BN, Russell RJM, Bell SD, Taylor GL, White MF (2002) Structure of Alba: an archaeal chromatin protein modulated by acetylation. EMBO J 21:4654-4662

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen D. Bell .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Bell, S.D., White, M.F. (2010). Archaeal Chromatin Organization. In: Dame, R.T., Dorman, C.J. (eds) Bacterial Chromatin. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3473-1_10

Download citation

Publish with us

Policies and ethics