Skip to main content

The Use of Transgenic Mice in Cancer and Genome Stability Research

  • Chapter
  • First Online:
Genome Stability and Human Diseases

Part of the book series: Subcellular Biochemistry ((SCBI,volume 50))

Abstract

The development of effective cancer therapeutics is an important goal of modern biomedical sciences. To identify potential cancer therapeutic targets, the processes involved in tumorigenesis must be understood at all levels, which requires the development of model systems accurately mimicing tumor development. Cancer is the general name given to a variety of complex diseases characterised by uncontrolled cell proliferation. Cancer development is dependent not only on the changes occurring within the transformed cells, but also on the interactions of the cells with their microenvironment. The majority of our current understanding of carcinogenesis comes from the in vitro analysis of late-stage tumor tissue removed from cancer patients. While this has elucidated many genomic changes experienced by cancer cells, it provides little information about the factors influencing early-stage cancer development in vivo. Also certain hallmarks of cancer, such as metastasis and angiogenesis, are impossible to study in vitro. The mouse has become an important model for studying the in vivo aspects of human cancer development. Transgenic mouse models have been engineered to develop cancers, which accurately mimic their human counterparts, and have potential applications to test the effectiveness of novel cancer therapeutics. One of the most promising transgenic mouse models of human cancer arises from mice engineered with genomic instability. These transgenic models have been shown to develop human-like cancers and have the potential to provide insights into the molecular events occurring in earliest stages of tumorigenesis in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Apc:

adenomatous polyposis coli

ATM:

Ataxia-telangiectasia-mutated

CIN:

chromosomal instabilities

Cre/loxP:

recombinase systems (Cre recombinase with loxP recognition site)

DDR:

DNA damage responses

ES:

embryonic stem

FAP:

Familial Adenomatous Polyposis

Flp/FRT:

recombinase systems (Flp recombinase with FRT recognition site)

HR:

homologous recombination

Min:

multiple intestinal neoplasia

MIN:

microsatellite instabilities

NOD/SCID:

non-obese diabetic/severely compromized immunodeficient

OIS:

oncogene-induced senescence

Rb:

retinoblastoma gene (tumor suppressor gene)

SCID:

severely compromized immunodeficient

Terc:

telomerase RNA component also called hTR

TERT:

telomerase reverse transcriptase subunit

TSG:

tumor suppressor gene

tTA:

transcriptional transactivator

WT1:

Wilms’ tumor gene 1

WT1-TCR:

WT1-specific T cell receptor

References

  • Atkin, N. B. (1986) Lack of reciprocal translocations in carcinomas. Cancer Genet Cytogenet, 21, 275–278.

    Article  CAS  PubMed  Google Scholar 

  • Bartkova, J., Horejsi, Z., Koed, K., Kramer, A., Tort, F., Zieger, K., Guldberg, P., Sehested, M., Nesland, J. M., Lukas, C., Orntoft, T., Lukas, J., and Bartkek, J. (2005) DNA damage response as a candidate anti-cancer barrier in early human tumourigenesis. Nature, 434, 864–870.

    Article  CAS  PubMed  Google Scholar 

  • Bartkova, J., Rezaei, N., Liontos, M., Karakaidos, P., Kletsas, D., Issaeva, N., Vassiliou, L. F., Kolettas, E., Niforou, K., Zoumpourlis, V. C., Takaoka, M., Nakagawa, H., Tort, F., Fugger, K., Johanson, F., Sehested, M., Anderson, C. L., Dyrskjot, L., Arntoft, T., Lukas, J., Kittas, C., Helleday, T., Halazonetis, T. D., Bastek, J., and Gorgouli, V. G. (2006) Oncogene-induced senescence is part of the tumorigenesis barrier imposed by DNA damage checkpoints. Nature, 444, 633–637.

    Article  CAS  PubMed  Google Scholar 

  • Blasco, M. A., Lee, H., Hande, M. P., Samper, E., Lansdorp, P. M., de Pinho, R. A., and Greide, C. W. (1997) Telomere shortening and tumour formation by mouse cells lacking telomerase RNA. Cell, 91, 25–34.

    Article  CAS  PubMed  Google Scholar 

  • Blasco, M. A., Rizen, M., Greider, C. N., and Hanahan, D. (1996) Differential regulation of telomerase activity and telomerase RNA during multistage Tumourigenesis. Nat Genet, 12, 200–204.

    Article  CAS  PubMed  Google Scholar 

  • Cahill, D. P., Kinzler, K. W., Vogelstein, K. B., and Lengauer, C. (1999) Genetic instability and Darwinian selection in tumours. Trends Cell Biol, 9, M57–M90.

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez-Suarez, E., Geserick, C., Flores, J. M., and Blasco, M. A. (2005) Antagonistic effects of telomerase on cancer and aging in K5-mTERT transgenic mice. Oncogene, 24, 2256–2270.

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez-Suarez, E., Samper, E., Flores, J. M., and Blasco, M. A. (2000) Telomerase-deficient mice with short telomeres are resistant to skin tumourigenesis. Nat Genet, 26, 114–117.

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez-Suarez, E., Samper, E., Ramirez, A., Flores, J. M., Martin-Caballero, J., Jorcano, J. L., and Blasco, M. A. (2001) Increased epidermal tumours and increased skin wound healing in transgenic mice overexpressing the catalytic subunit of telomerase, mtert, in basal keratinocytes. EMBO J, 20, 2619–2630.

    Article  CAS  PubMed  Google Scholar 

  • Gopinathan, A. and Tuveson, D. A. (2008) The use of GEM models for experimental cancer therapeutics. Dis Model Mech, 1, 83–86.

    Article  PubMed  Google Scholar 

  • Gorgoulis, V. G., Vassiliou, L. F., Karakaidous, P., Zacharatos, P., Kotsinas, A., Liloglou, T., Venere, M., Ditullio, R. A., Kastrinakis, N. G., Levy, B., Kletsas, D., Yoneta, A., Hertyn, M., Kittas, C., and Halazonetis, T. D. (2005) Activation of the DNA damage checkpoint and genome instability in human precancerous lesions. Nature, 434, 907–913.

    Article  CAS  PubMed  Google Scholar 

  • Hanahan, D. and Folkman, J. (1996) Patterns and emerging mechanisms of the angiogenic switch during tumourigenesis. Cell, 86, 353–364.

    Article  CAS  PubMed  Google Scholar 

  • Hanahan, D. and Weinberg, R. A. (2000) The hallmarks of cancer. Cell, 100, 57–70.

    Article  CAS  PubMed  Google Scholar 

  • Hennighausen, L. (2000) Mouse models of breast cancer. Breast Cancer Res, 2, 2–7.

    Article  CAS  PubMed  Google Scholar 

  • Heyer, J., Yang, K., Lipkin, M., Edelmann, W., and Kucherlapati, R. (1999) Mouse models of colorectal cancer. Oncogene, 18, 5325–5333.

    Article  CAS  PubMed  Google Scholar 

  • Hudson, W. A., Li, Q., Le, C., and Kersey, J. H. (1998) Xenotransplantation of human lymphoid malignancies is optimised in mice with multiple immunological defects. Leukemia, 12, 2029–2033.

    Article  CAS  PubMed  Google Scholar 

  • Ittner, L. M. and Gotz, J. (2007) Pronuclear injection for the production of transgenic mice. Nat Protoc, 2, 1206–1215.

    Article  CAS  PubMed  Google Scholar 

  • Jonkers, J. and Berns, A. (2002) Conditional mouse models of sporadic cancer. Nature Rev Cancer, 2, 251–265.

    Article  CAS  Google Scholar 

  • Joyner, A. L. (1993) Gene Targeting: A Practical Approach, Oxford University Press, Oxford, UK.

    Google Scholar 

  • Lengauer, C., Kinzler, K. W., and Vogelstein, B. (1998) Genetic instabilities in human cancers. Nature, 396, 643–649.

    Article  CAS  PubMed  Google Scholar 

  • Loeb, L. A. (1991) Mutator Phenotype may be required for multistage carcinogenesis. Cancer Res, 51, 3075–3079.

    CAS  PubMed  Google Scholar 

  • Maser, R. S., Choudhury, B., Campbell, P. J., Feng, B., Wong, K., Protopopov, A., O’Neil, J., Gutierrez, A., Ivanova, E., Perna, I., Lin, E., Mani, V., Jiang, S., Weidemeyer, R., Kabbarah, O., Nogueira, C., Histen, G., Aster, J., Mansour, M., Duke, V., Foroni, L., Fielding, A. K., Goldstone, A. H., Rowe, J. M., Wang, Y. A., Look, A. T., Stratton, M. R., Chin, L., Futreal, P. A., and Depinho, R. A. (2007) Chromosomally unstable mouse tumours have genomic alterations similar to diverse human cancers. Nature, 447, 966–971.

    Article  CAS  PubMed  Google Scholar 

  • Micco, D. I., Fumagalli, R., Cicalese, M., Piccinin, A., Dasparini, S., Luise, P., Schurra, C., Garre, C., Nuciforo, M., Bensimon, P. G., Maestro, A. R., Pelicci, P. G., and Di Fagagna, F. A. (2006) Oncogene-induced senescence is a DNA damage response triggered by DNA hyper-replication. Nature, 444, 638–642.

    Article  PubMed  Google Scholar 

  • Moser, A. R., Pitot, H. C., and Dove, W. F. (1990) A dominant mutation that predisposes to multiple intestinal neoplasia in the mouse. Science, 247, 322–324.

    Article  CAS  PubMed  Google Scholar 

  • Nishisho, I., Nakamura, Y., Miyoshi, Y., Miki, Y., Ando, H., Horii, A., Koyama, K., Utsunomiya, J., Baba, S., and Hedge, P. (1991) Mutations of chromosome 5q21 genes in FAP and colorectal cancer patients. Science, 253, 665–669.

    Article  CAS  PubMed  Google Scholar 

  • O’Reilly, M. S., Boehm, T., Shing, Y., Fukai, N., Vasios, G., Lane, W. S., Flynn, E., Birkhead, J. R., Olsen, B. R., and Folkman, J. (1997) Endostatin: an endogenous inhibitor of angiogenesis and tumor growth. Cell, 88, 277–285.

    Article  PubMed  Google Scholar 

  • Prowse, K. R. and Greider, C. W. (1995) Developmental and tissue-specific regulation of mouse telomerase and telomere length. Proc Natl Acad Sci USA, 92, 4818–4822.

    Article  CAS  PubMed  Google Scholar 

  • Richmond, A. and Yingjun, S. (2008) Mouse xenograft models vs. GEM models for human cancer therapeutics. Dis Model Mech, 1, 78–82.

    Article  PubMed  Google Scholar 

  • Sotillo, R., Hernando, E., Diaz-Rodriguez, E., Teruya-Feldstein, J., Cordon-Cardo, C., Lowe, S. W., and Benezra, R. (2007) Mad2 overexpression promotes aneuploidy and tumourigenesis in mice. Cancer Cell, 11, 9–23.

    Article  CAS  PubMed  Google Scholar 

  • Su, L. K., Kinzler, K. W., Vogelstein, B., Preisinger, A. C., Moser, A. R., Luongo, C., Gould, K. A., and Dove, W. F. (1992) Multiple intestinal neoplasia caused by a mutation in the murine homolog of the APC gene. Science, 265, 668–670.

    Article  Google Scholar 

  • Twombly, R. (2002) First clinical trials of endostatin yield lukewarm Results. J Natl Cancer Inst, 94, 1520–1521.

    PubMed  Google Scholar 

  • Wang, Y., Putnam, C. D., Kane, M. F., Zhang, W., Edelmann, L., Russell, R., Carrion, D. V., Chin, L., Kucherlapati, R., Kolodner, R. D., and Edelmann, W. (2005) Mutation in Rpa1 Results in defective DNA double-strand break repair, chromosomal instability and cancer in mice. Nat Genet, 37, 750–755.

    Article  CAS  PubMed  Google Scholar 

  • Xue, S., Gao, L., Hart, D., Gillmore, R., Qusim, W., Thrasher, A., Apperley, J., Engels, B., Uckert, W., Morris, E., and Stauss, H. (2005) Elimination of human leukemia cells in NOD/SCID mice by WT1-TCR gene–transduced human T cells. Blood, 106, 3062–3067.

    Article  CAS  PubMed  Google Scholar 

  • Zhou, Z., Flesken-Nikitin, A., Corney, D. C., Wang, W., Goodrich, D. W., Roy-Burman, P., and Nikitin, A. Y. (2006) Synergy of p53 and Rb Deficiency in a conditional mouse model for metastatic prostate cancer. Cancer Res, 66, 7889–7898.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

This work was supported by Health Research Board, Ireland, INTAS, and Science Foundation Ireland. S. C. is an NUIG Scholar.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heinz-Peter Nasheuer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Conmy, S., Nasheuer, HP. (2010). The Use of Transgenic Mice in Cancer and Genome Stability Research. In: Nasheuer, HP. (eds) Genome Stability and Human Diseases. Subcellular Biochemistry, vol 50. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3471-7_17

Download citation

Publish with us

Policies and ethics