Skip to main content

Computational Homogenization of Polymeric Nanofiber Scaffolds and Biological Cells

  • Chapter
  • First Online:

Part of the book series: Solid Mechanics and Its Applications ((SMIA,volume 168))

Abstract

An understanding of the structure–property relationship is essential for the estimation of mechanical properties of nano-materials like polymeric nanofibers and biological materials like cells and tissues. The properties of these structures are closely related to the internal molecular structure and therefore a multiscale based mathematical modeling is required for the determination of its macroscopic properties. In this investigation, we present multiscale mathematical models to estimate the mechanical properties of polymeric nanofibers from the basic building blocks to the macroscale nanofibrous structures and also study the homogenization of biological cells considering the microcellular constituents.Theoretical analysis of polymeric nanofibers based scaffolds are necessary towards designing novel bio-medical applications, while through homogenization of biological cells new diagnostic tools based on mechanical properties could be developed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Aboudi J (1991) Mechanics of composite materials – A unified micromechanical approach. Elsevier, Amsterdam

    Google Scholar 

  2. Balac I, Milovancevic M, Tang C-Y, Uskokovic PS, Uskokovic DP (2004) Estimation of elastic properties of a particulate polymer composite using a face-centered cubic FE model. Mater Lett 58:2437–2441

    Article  CAS  Google Scholar 

  3. Baltussen JJM, Northolt MG, van der Hout R (1997) The continuous chain model for the elastic extension of polymer fibers in the glassy state. J Rheol 41:549–573

    Article  CAS  Google Scholar 

  4. Costa KD, Yin FCP (1999) Analysis of indentation: Implications for measuring mechanical properties with atomic force microscopy. J Biomech Eng-T ASME 121:462–471

    Article  CAS  Google Scholar 

  5. Costa KD, Sim AJ, Yin FC-P (2006) Non-Hertzian approach to analyzing mechanical properties of endothelial cells probed by atomic force microscopy. J Biomech Eng-T ASME 128:176–184

    Article  Google Scholar 

  6. Fambri L, Pergoretti A, Fenner R, Incardona D, Migliaresi C (1997) Biodegradable fibres of poly(L-lactic acid) produced by melt spinning. Polymer 38:79–85

    Article  CAS  Google Scholar 

  7. Freed LE, Vunjak-Novakovic G, Biron RJ, Eagles DB, Lesnoy DC, Barlow SK, Langer R (1994) Biodegradable polymer scaffolds for tissue engineering. Bio/Technol 12:689–693

    Article  CAS  Google Scholar 

  8. Griebel M, Hamaekers J (2004) Molecular dynamics simulations of the elastic moduli of polymer-carbon nanotube composites. Comput Method Appl M 193:1773–1788

    Article  Google Scholar 

  9. Hibbitt K, and Sorensen Inc, HKS (2002) ABAQUS standard, Version 6.3-2. HKS, Providence, RI

    Google Scholar 

  10. Hoogsteen W, Postema AR, Pennings AJ, ten Brinke G (1990) Crystal structure, conformation, and morphology of solution-spun poly(L-lactide) fibers. Macromolecules 23:634–642

    Article  CAS  Google Scholar 

  11. Hu S, Eberhard L, Chen J, Love JC (2004) Mechanical anisotropy of adherent cells probed by a three-dimensional magnetic twisting device. Am J Physiol-Cell Ph 287:C1184–C1191

    Article  CAS  Google Scholar 

  12. Humphrey JD (2002) On mechanical modeling of dynamic changes in the structure and properties in adherent cells. Math Mech Solids 7:521–539

    Article  Google Scholar 

  13. Inai R, Kotaki M, Ramakrishna S (2005) Structure and properties of electrospun PLLA single nanofibres. Nanotechnology 16:208–213

    Article  CAS  Google Scholar 

  14. Karcher H, Lammerding J, Huang H, Lee RT, Kamm RD, Kaazempur-Mofrad MR (2003) A three-dimensional viscoelastic model for cell deformation with experimental verification. Biophys J 85:3336–3349

    Article  CAS  Google Scholar 

  15. Lee JH, Park TG, Park HS, Lee DS, Lee YK, Yoon SC, Nam J-D (2003) Thermal and mechanical characteristics of poly(-lactic acid) nanocomposite scaffold. Biomaterials 24:2773–2778

    Article  CAS  Google Scholar 

  16. Leenslag JW, Pennings AJ (1987) High-strength poly(L-lactide) fibres by a dry-spinning/hot-drawing process. Polymer 28:1695–1702

    Article  CAS  Google Scholar 

  17. Lim JY, Kim SH, Lim S, Kim YH (2002) Improvement of flexural strengths of poly(L-lactic acid) by solid-state extrusion. Macromol Chem Phys 202:2447–2453

    Article  Google Scholar 

  18. Mezghani K, Spruiell JE (1998) High speed melt spinning of poly(L-lactic acid) filaments. J Polym Sci Part B: Polym Phys 36:1005–1012

    Article  CAS  Google Scholar 

  19. Mura T (1997) Micromechanics of defects in solids. Martinus Nijhoff, Hague, The Netherlands

    Google Scholar 

  20. Mylvaganam K, Zhang LC (2004) Important issues in a molecular dynamics simulation for characterising the mechanical properties of carbon nanotubes. Carbon 42:2025–2032

    Article  CAS  Google Scholar 

  21. Na S, Sun Z, Meininger GA, Humphrey JD (2004) On atomic force microscopy and the constitutive behavior of cells. Biomech Model Mechanobiol 3:75–84

    Article  CAS  Google Scholar 

  22. Ohayon J, Tracqui P (2005) Computation of adherent cell elasticity for critical cell-bead geometry in magnetic twisting experiments. Ann Biomed Eng 33:131–141

    Article  Google Scholar 

  23. Pabst W, Gregorova E (2004) Effective elastic properties of alumina–zirconia composite ceramics – Part 2. Micromechanical modeling. Ceram Silik 48:14–23

    CAS  Google Scholar 

  24. Rappe AK, Casewit CJ, Colwell KS, Goddard WA, Skiff WM (1992) UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations. J Am Chem Soc 114:10024-10035

    Article  CAS  Google Scholar 

  25. Reddy JN (2006) An introduction to the finite element method, 3rd edn. McGraw-Hill, New York

    Google Scholar 

  26. Reddy JN (2004) An introduction to nonlinear finite element analysis. Oxford University Press, Oxford

    Book  Google Scholar 

  27. Reddy JN (2008) An introduction to continuum mechanics with applications. Cambridge University Press, New York

    Google Scholar 

  28. Rotsch C, Radmacher M (2000) Drug-induced changes of cytoskeletal structure and mechanics in fibroblasts: An atomic force microscopy study. Biophys J 78:520–535

    Article  CAS  Google Scholar 

  29. Tan EPS, Lim CT (2004) Physical properties of a single polymeric nanofiber. Appl Phys Lett 84:1603–1605

    Article  CAS  Google Scholar 

  30. Tan EPS, Lim CT (2006) Nanomechanical characterization of nanofibers – A review. Compos Sci Technol 66:1099–1108

    Article  Google Scholar 

  31. Thelen S, Barthelat F, Brinson LC (2004) Mechanics considerations for microporous titanium as an orthopaedic implant material. J Biomed Mater Res 69A:601–610

    Article  CAS  Google Scholar 

  32. Unnikrishnan VU, Reddy JN (2005) Characteristics of silicon doped carbon nanotube reinforced nanocomposites. Int J Multiscale Comput Eng 3:437–450

    Article  Google Scholar 

  33. Unnikrishnan VU, Unnikrishnan GU, Reddy JN, Lim CT (2007) Atomistic-mesoscale coupled mechanical analysis of polymeric nanofibers. J Mater Sci 42:8844–8852

    Article  CAS  Google Scholar 

  34. Unnikrishnan GU, Unnikrishnan VU, Reddy JN (2007) Constitutive material modeling of cell: A micromechanics approach. J Biomed Eng 129:315–323

    CAS  Google Scholar 

  35. Zussman E, Rittel D, Yarin AL (2003) Failure modes of electrospun nanofibers. Appl Phys Lett 82:3958–3960

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the support of this research through Oscar S. Wyatt Endowed Chair funds at the Texas A&M University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. N. Reddy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Reddy, J.N., Unnikrishnan, V.U., Unnikrishnan, G.U. (2009). Computational Homogenization of Polymeric Nanofiber Scaffolds and Biological Cells. In: Gilat, R., Banks-Sills, L. (eds) Advances in Mathematical Modeling and Experimental Methods for Materials and Structures. Solid Mechanics and Its Applications, vol 168. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3467-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-90-481-3467-0_7

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-3466-3

  • Online ISBN: 978-90-481-3467-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics