Skip to main content

Mitochondria, Oxidative Damage and Longevity: What Can Comparative Biology Teach Us?

  • Chapter
  • First Online:

Abstract

The most studied theory of aging is the oxidative stress theory of aging, and evidence supporting or disputing the theory has come primarily from investigations using common model organisms such as C. elegans, Drosophila, and laboratory rodent models. However, studies using more non-traditional animal models offer an excellent opportunity to critically evaluate different aging hypotheses. The advantage of studying a broader spectrum of species is that one can significantly expand the amount of information obtained on a wide range of biological phenotypes/traits such as life span, body weight, and metabolic rate. In addition, the ultimate validity of a hypothesis/theory can be more critically tested using as many samples, in this case, species as possible. In this chapter we present evidence regarding different aspects of oxidative stress theory of aging with special emphasis on metabolic rate, reactive oxygen species generation, and oxidative damage to macromolecules. The purpose of the chapter is to initiate the integration of current knowledge and also to inspire readers to consider the advantages and power of using a comparative biology approach to study aging.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Harman D (1956). Aging: a theory based on free radical and radiation chemistry. J Gerontol 11(3): 298–300.

    CAS  PubMed  Google Scholar 

  2. Beckman KB and Ames BN (1998). The free radical theory of aging matures. Physiol Rev 78(2): 547–581.

    CAS  PubMed  Google Scholar 

  3. Muller FL, Lustgarten MS, Jang Y, Richardson A, and Van Remmen H (2007). Trends in oxidative aging theories. Free Radic Biol Med 43(4): 477–503.

    Article  CAS  PubMed  Google Scholar 

  4. Van Remmen H and Richardson A (2001). Oxidative damage to mitochondria and aging. Exp Gerontol 36(7): 957–968.

    Article  CAS  PubMed  Google Scholar 

  5. Rubner M (1908). Das Problem der Lebensdauer und Seine Beziehungen Zu Wachstum und Ernarhrung Muenchen. Germany: Oldenburg.

    Google Scholar 

  6. Pearl R (1928). The Rate of Living. London: University of London Press.

    Google Scholar 

  7. Hulbert AJ, Pamplona R, Buffenstein R, and Buttemer WA (2007). Life and death: metabolic rate, membrane composition, and life span of animals. Physiol Rev 87(4): 1175–1213.

    Article  CAS  PubMed  Google Scholar 

  8. Lavoisier AL. Considérations Générales sur la Nature des Acides 1778.

    Google Scholar 

  9. Gershman R, Gilbert DL, Nye SW, Dwyer P, and Fenn WO (1954). Oxygen poisoning and X-irradiation: A mechanism in common. Science 119: 623–626.

    Article  Google Scholar 

  10. Speakman JR (2005b). Correlations between physiology and lifespan–two widely ignored problems with comparative studies. Aging Cell 4(4): 167–175.

    Article  CAS  PubMed  Google Scholar 

  11. Holloszy JO, Smith EK, Vining M, and Adams S (1985). Effect of voluntary exercise on longevity of rats. J Appl Physiol 59(3): 826–831.

    CAS  PubMed  Google Scholar 

  12. Lee IM, Hsieh CC, and Paffenbarger RS, Jr. (1995). Exercise intensity and longevity in men. The harvard alumni health study. JAMA 273(15): 1179–1184.

    Article  CAS  PubMed  Google Scholar 

  13. Masoro EJ (2005). Overview of caloric restriction and ageing. Mech Ageing Dev 126(9): 913–922.

    Article  CAS  PubMed  Google Scholar 

  14. McCarter RJ and Palmer J (1992). Energy metabolism and aging: a lifelong study of Fischer 344 rats. Am J Physiol 263(3 Pt 1): E448–E452.

    CAS  PubMed  Google Scholar 

  15. Speakman JR, Talbot DA, Selman C, Snart S, McLaren JS, Redman P, Krol E, Jackson DM, Johnson MS, and Brand MD (2004). Uncoupled and surviving: individual mice with high metabolism have greater mitochondrial uncoupling and live longer. Aging Cell 3(3): 87–95.

    Article  CAS  PubMed  Google Scholar 

  16. Speakman JR, van Acker A, and Harper EJ (2003). Age-related changes in the metabolism and body composition of three dog breeds and their relationship to life expectancy. Aging Cell 2(5): 265–275.

    Article  CAS  PubMed  Google Scholar 

  17. Hulbert AJ, Clancy DJ, Mair W, Braeckman BP, Gems D, and Partridge L (2004). Metabolic rate is not reduced by dietary-restriction or by lowered insulin/IGF-1 signalling and is not correlated with individual lifespan in Drosophila melanogaster. Exp Gerontol 39(8): 1137–1143.

    Article  CAS  PubMed  Google Scholar 

  18. Buffenstein R and Yahav S (1991). The effect of diet on microfaunal population and function in the caecum of a subterranean naked mole-rat, Heterocephalus glaber. Br J Nutr 65(2): 249–258.

    Article  CAS  PubMed  Google Scholar 

  19. O’Connor TP, Lee A, Jarvis JU, and Buffenstein R (2002). Prolonged longevity in naked mole-rats: age-related changes in metabolism, body composition and gastrointestinal function. Comp Biochem Physiol A Mol Integr Physiol 133(3): 835–842.

    Article  PubMed  Google Scholar 

  20. Loeb J and Northrop JH (1917). What determines the duration of life in metazoa?. Proc Natl Acad Sci USA 3(5): 382–386.

    Article  CAS  PubMed  Google Scholar 

  21. Arking R, Buck S, Wells RA, and Pretzlaff R (1988). Metabolic rates in genetically based long lived strains of Drosophila. Exp Gerontol 23(1): 59–76.

    Article  CAS  PubMed  Google Scholar 

  22. Speakman JR (2005a). Body size, energy metabolism and lifespan. J Exp Biol 208(Pt 9): 1717–1730.

    Article  PubMed  Google Scholar 

  23. Chance B, Sies H, and Boveris A (1979). Hydroperoxide metabolism in mammalian organs. Physiol Rev 59(3): 527–605.

    CAS  PubMed  Google Scholar 

  24. Rolfe DF and Brown GC (1997). Cellular energy utilization and molecular origin of standard metabolic rate in mammals. Physiol Rev 77(3): 731–758.

    CAS  PubMed  Google Scholar 

  25. Davies M (1961). On body size and tissue respiration. J Cell Comp Physiol 57: 135–147.

    Article  CAS  PubMed  Google Scholar 

  26. Navarro A and Boveris A (2004). Rat brain and liver mitochondria develop oxidative stress and lose enzymatic activities on aging. Am J Physiol Regul Integr Comp Physiol 287(5): R1244–R1249.

    CAS  PubMed  Google Scholar 

  27. Kwong LK and Sohal RS (2000). Age-related changes in activities of mitochondrial electron transport complexes in various tissues of the mouse. Arch Biochem Biophys 373(1): 16–22.

    Article  CAS  PubMed  Google Scholar 

  28. Choksi KB, Nuss JE, Boylston WH, Rabek JP, and Papaconstantinou J (2007). Age-related increases in oxidatively damaged proteins of mouse kidney mitochondrial electron transport chain complexes. Free Radic Biol Med 43(10): 1423–1438.

    Article  CAS  PubMed  Google Scholar 

  29. Sugiyama S, Takasawa M, Hayakawa M, and Ozawa T (1993). Changes in skeletal muscle, heart and liver mitochondrial electron transport activities in rats and dogs of various ages. Biochem Mol Biol Int 30(5): 937–944.

    CAS  PubMed  Google Scholar 

  30. Bowling AC, Mutisya EM, Walker LC, Price DL, Cork LC, and Beal MF (1993). Age-dependent impairment of mitochondrial function in primate brain. J Neurochem 60(5): 1964–1967.

    Article  CAS  PubMed  Google Scholar 

  31. Zahn JM, Sonu R, Vogel H, Crane E, Mazan-Mamczarz K, Rabkin R, Davis RW, Becker KG, Owen AB, and Kim SK (2006). Transcriptional profiling of aging in human muscle reveals a common aging signature. PLoS Genet 2(7): e115.

    Article  PubMed  Google Scholar 

  32. St-Pierre J, Buckingham JA, Roebuck SJ, and Brand MD (2002). Topology of superoxide production from different sites in the mitochondrial electron transport chain. J Biol Chem 277(47): 44784–44790.

    Article  CAS  PubMed  Google Scholar 

  33. Ku HH, Brunk UT, and Sohal RS (1993). Relationship between mitochondrial superoxide and hydrogen peroxide production and longevity of mammalian species. Free Radic Biol Med 15(6): 621–627.

    Article  CAS  PubMed  Google Scholar 

  34. Barja G and Herrero A (1998). Localization at complex I and mechanism of the higher free radical production of brain nonsynaptic mitochondria in the short-lived rat than in the longevous pigeon. J Bioenerg Biomembr 30(3): 235–243.

    Article  CAS  PubMed  Google Scholar 

  35. Lambert AJ, Boysen HM, Buckingham JA, Yang T, Podlutsky A, Austad SN, Kunz TH, Buffenstein R, and Brand MD (2007). Low rates of hydrogen peroxide production by isolated heart mitochondria associate with long maximum lifespan in vertebrate homeotherms. Aging Cell 6(5): 607–618.

    Article  CAS  PubMed  Google Scholar 

  36. Sohal RS, Svensson I, Sohal BH, and Brunk UT (1989). Superoxide anion radical production in different animal species. Mech Ageing Dev 49(2): 129–135.

    Article  CAS  PubMed  Google Scholar 

  37. Sohal RS, Svensson I, and Brunk UT (1990b). Hydrogen peroxide production by liver mitochondria in different species. Mech Ageing Dev 53(3): 209–215.

    Article  CAS  PubMed  Google Scholar 

  38. Robert KA, Brunet-Rossinni A, and Bronikowski AM (2007). Testing the ‘free radical theory of aging’ hypothesis: physiological differences in long-lived and short-lived colubrid snakes. Aging Cell 6(3): 395–404.

    Article  CAS  PubMed  Google Scholar 

  39. Sohal RS, Ku HH, and Agarwal S (1993b). Biochemical correlates of longevity in two closely related rodent species. Biochem Biophys Res Commun 196(1): 7–11.

    Article  CAS  PubMed  Google Scholar 

  40. Ku HH and Sohal RS (1993). Comparison of mitochondrial pro-oxidant generation and anti-oxidant defenses between rat and pigeon: possible basis of variation in longevity and metabolic potential. Mech Ageing Dev 72(1): 67–76.

    Article  CAS  PubMed  Google Scholar 

  41. Herrero A and Barja G (1997). Sites and mechanisms responsible for the low rate of free radical production of heart mitochondria in the long-lived pigeon. Mech Ageing Dev 98(2): 95–111.

    Article  CAS  PubMed  Google Scholar 

  42. Herrero A and Barja G (1998). H2O2 production of heart mitochondria and aging rate are slower in canaries and parakeets than in mice: sites of free radical generation and mechanisms involved. Mech Ageing Dev 103(2): 133–146.

    Article  CAS  PubMed  Google Scholar 

  43. Brunet-Rossinni AK (2004). Reduced free-radical production and extreme longevity in the little brown bat (Myotis lucifugus) versus two non-flying mammals. Mech Ageing Dev 125(1): 11–20.

    Article  CAS  PubMed  Google Scholar 

  44. Csiszar A, Labinskyy N, Zhao X, Hu F, Serpillon S, Huang Z, Ballabh P, Levy RJ, Hintze TH, Wolin MS, Austad SN, Podlutsky A, and Ungvari Z (2007b). Vascular superoxide and hydrogen peroxide production and oxidative stress resistance in two closely related rodent species with disparate longevity. Aging Cell 6(6): 783–797.

    Article  CAS  PubMed  Google Scholar 

  45. Barja G, Cadenas S, Rojas C, Perez-Campo R, and Lopez-Torres M (1994b). Low mitochondrial free radical production per unit O2 consumption can explain the simultaneous presence of high longevity and high aerobic metabolic rate in birds. Free Radic Res 21(5): 317–327.

    Article  CAS  PubMed  Google Scholar 

  46. Wardman P (2007). Fluorescent and luminescent probes for measurement of oxidative and nitrosative species in cells and tissues: progress, pitfalls, and prospects. Free Radic Biol Med 43(7): 995–1022.

    Article  CAS  PubMed  Google Scholar 

  47. Forman HJ and Kennedy J (1976). Dihydroorotate-dependent superoxide production in rat brain and liver. A function of the primary dehydrogenase. Arch Biochem Biophys 173(1): 219–224.

    Article  CAS  PubMed  Google Scholar 

  48. Panov A, Dikalov S, Shalbuyeva N, Hemendinger R, Greenamyre JT, and Rosenfeld J (2007). Species- and tissue-specific relationships between mitochondrial permeability transition and generation of ROS in brain and liver mitochondria of rats and mice. Am J Physiol Cell Physiol 292(2): C708–C718.

    Article  CAS  PubMed  Google Scholar 

  49. Benard G, Faustin B, Passerieux E, Galinier A, Rocher C, Bellance N, Delage JP, Casteilla L, Letellier T, and Rossignol R (2006). Physiological diversity of mitochondrial oxidative phosphorylation. Am J Physiol Cell Physiol 291(6): C1172–C1182.

    Article  CAS  PubMed  Google Scholar 

  50. Csiszar A, Labinskyy N, Orosz Z, Xiangmin Z, Buffenstein R, and Ungvari Z (2007a). Vascular aging in the longest-living rodent, the naked mole rat. Am J Physiol Heart Circ Physiol 293(2): H919–H927.

    Article  CAS  PubMed  Google Scholar 

  51. Sasaki T, Unno K, Tahara S, Shimada A, Chiba Y, Hoshino M, and Kaneko T (2008). Age-related increase of superoxide generation in the brains of mammals and birds. Aging Cell 7: 459–469.

    Article  CAS  PubMed  Google Scholar 

  52. Wang W, Fang H, Groom L, Cheng A, Zhang W, Liu J, Wang X, Li K, Han P, Zheng M, Yin J, Wang W, Mattson MP, Kao JP, Lakatta EG, Sheu SS, Ouyang K, Chen J, Dirksen RT, and Cheng H (2008). Superoxide flashes in single mitochondria. Cell 134(2): 279–290.

    Article  CAS  PubMed  Google Scholar 

  53. Tolmasoff JM, Ono T, and Cutler RG (1980). Superoxide dismutase: correlation with life-span and specific metabolic rate in primate species. Proc Natl Acad Sci USA 77(5): 2777–2781.

    Article  CAS  PubMed  Google Scholar 

  54. Cutler RG (1991). Antioxidants and aging. Am J Clin Nutr 53(1 Suppl): 373S–379S.

    CAS  PubMed  Google Scholar 

  55. Buffenstein R (2008). Negligible senescence in the longest living rodent, the naked mole-rat: insights from a successfully aging species. J Comp Physiol [B] 178(4): 439–445.

    Google Scholar 

  56. Sohal RS, Sohal BH, and Brunk UT (1990a). Relationship between antioxidant defenses and longevity in different mammalian species. Mech Ageing Dev 53(3): 217–227.

    Article  CAS  PubMed  Google Scholar 

  57. Perez-Campo R, Lopez-Torres M, Cadenas S, Rojas C, and Barja G (1998). The rate of free radical production as a determinant of the rate of aging: evidence from the comparative approach. J Comp Physiol [B] 168(3): 149–158.

    CAS  Google Scholar 

  58. Lopez-Torres M, Perez-Campo R, Rojas C, Cadenas S, and Barja G (1993). Maximum life span in vertebrates: relationship with liver antioxidant enzymes, glutathione system, ascorbate, urate, sensitivity to peroxidation, true malondialdehyde, in vivo H2O2, and basal and maximum aerobic capacity. Mech Ageing Dev 70(3): 177–199.

    Article  CAS  PubMed  Google Scholar 

  59. Barja G, Cadenas S, Rojas C, Lopez-Torres M, and Perez-Campo R (1994a). A decrease of free radical production near critical targets as a cause of maximum longevity in animals. Comp Biochem Physiol Biochem Mol Biol 108(4): 501–512.

    Article  CAS  PubMed  Google Scholar 

  60. Perez-Campo R, Lopez-Torres M, Rojas C, Cadenas S, and Barja G (1994). Longevity and antioxidant enzymes, non-enzymatic antioxidants and oxidative stress in the vertebrate lung: a comparative study. J Comp Physiol [B] 163(8): 682–689.

    CAS  Google Scholar 

  61. Wilhelm Filho D, Althoff SL, Dafre AL, and Boveris A (2007). Antioxidant defenses, longevity and ecophysiology of South American bats. Comp Biochem Physiol C Toxicol Pharmacol 146(1–2): 214–220.

    Article  PubMed  Google Scholar 

  62. Andziak B, O’Connor TP, and Buffenstein R (2005). Antioxidants do not explain the disparate longevity between mice and the longest-living rodent, the naked mole-rat. Mech Ageing Dev 126(11): 1206–1212.

    Article  CAS  PubMed  Google Scholar 

  63. Andziak B, O’Connor TP, Qi W, DeWaal EM, Pierce A, Chaudhuri AR, Van Remmen H, and Buffenstein R (2006). High oxidative damage levels in the longest-living rodent, the naked mole-rat. Aging Cell 5(6): 463–471.

    Article  CAS  PubMed  Google Scholar 

  64. Meydani M, Lipman RD, Han SN, Wu D, Beharka A, Martin KR, Bronson R, Cao G, Smith D, and Meydani SN (1998). The effect of long-term dietary supplementation with antioxidants. Ann NY Acad Sci 854: 352–360.

    Article  CAS  PubMed  Google Scholar 

  65. Van Remmen H, Qi W, Sabia M, Freeman G, Estlack L, Yang H, Mao Guo Z, Huang TT, Strong R, Lee S, Epstein CJ, and Richardson A (2004). Multiple deficiencies in antioxidant enzymes in mice result in a compound increase in sensitivity to oxidative stress. Free Radic Biol Med 36(12): 1625–1634.

    Article  PubMed  Google Scholar 

  66. Hamilton ML, Van Remmen H, Drake JA, Yang H, Guo ZM, Kewitt K, Walter CA, and Richardson A (2001). Does oxidative damage to DNA increase with age?. Proc Natl Acad Sci USA 98(18): 10469–10474.

    Article  CAS  PubMed  Google Scholar 

  67. Andziak B and Buffenstein R (2006). Disparate patterns of age-related changes in lipid peroxidation in long-lived naked mole-rats and shorter-lived mice. Aging Cell 5(6): 525–532.

    Article  CAS  PubMed  Google Scholar 

  68. Bjelland S and Seeberg E (2003). Mutagenicity, toxicity and repair of DNA base damage induced by oxidation. Mutat Res 531(1-2): 37–80.

    CAS  PubMed  Google Scholar 

  69. Cadet J, Douki T, and Ravanat JL (2008). Oxidatively generated damage to the guanine moiety of DNA: mechanistic aspects and formation in cells. Acc Chem Res 41(8): 1075–1083.

    Article  CAS  PubMed  Google Scholar 

  70. Barja G and Herrero A (2000). Oxidative damage to mitochondrial DNA is inversely related to maximum life span in the heart and brain of mammals. FASEB J 14(2): 312–318.

    CAS  PubMed  Google Scholar 

  71. Herrero A and Barja G (1999). 8-oxo-deoxyguanosine levels in heart and brain mitochondrial and nuclear DNA of two mammals and three birds in relation to their different rates of aging. Aging (Milano) 11(5): 294–300.

    CAS  Google Scholar 

  72. Foksinski M, Rozalski R, Guz J, Ruszkowska B, Sztukowska P, Piwowarski M, Klungland A, and Olinski R (2004). Urinary excretion of DNA repair products correlates with metabolic rates as well as with maximum life spans of different mammalian species. Free Radic Biol Med 37(9): 1449–1454.

    Article  CAS  PubMed  Google Scholar 

  73. Svoboda P, Maekawa M, Kawai K, Tominaga T, Savela K, and Kasai H (2006). Urinary 8-hydroxyguanine may be a better marker of oxidative stress than 8-hydroxydeoxyguanosine in relation to the life spans of various species. Antioxid Redox Signal 8(5–6): 985–992.

    Article  CAS  PubMed  Google Scholar 

  74. Muscari C, Giaccari A, Stefanelli C, Viticchi C, Giordano E, Guarnieri C, and Caldarera CM (1996). Presence of a DNA-4236 bp deletion and 8-hydroxy-deoxyguanosine in mouse cardiac mitochondrial DNA during aging. Aging (Milano) 8(6): 429–433.

    CAS  Google Scholar 

  75. Ozawa T (1999). Mitochondrial genome mutation in cell death and aging. J Bioenerg Biomembr 31(4): 377–390.

    Article  CAS  PubMed  Google Scholar 

  76. Lee CM, Chung SS, Kaczkowski JM, Weindruch R, and Aiken JM (1993). Multiple mitochondrial DNA deletions associated with age in skeletal muscle of rhesus monkeys. J Gerontol 48(6): B201–B205.

    CAS  PubMed  Google Scholar 

  77. Wang E, Wong A, and Cortopassi G (1997) The rate of mitochondrial mutagenesis is faster in mice than humans. Mutat. Res. 377(2): 157–166.

    Article  CAS  PubMed  Google Scholar 

  78. Hart RW, D’Ambrosio SM, Ng KJ, and Modak SP (1979). Longevity, stability and DNA repair. Mech Ageing Dev 9(3–4): 203–223.

    Article  CAS  PubMed  Google Scholar 

  79. Cortopassi GA and Wang E (1996). There is substantial agreement among interspecies estimates of DNA repair activity. Mech Ageing Dev 91(3): 211–218.

    Article  CAS  PubMed  Google Scholar 

  80. Vijg J (2000). Somatic mutations and aging: a re-evaluation. Mutat Res 447(1): 117–135.

    CAS  PubMed  Google Scholar 

  81. Montuschi P, Barnes P, and Roberts LJ, 2nd (2007). Insights into oxidative stress: the isoprostanes. Curr Med Chem 14(6): 703–717.

    Article  CAS  PubMed  Google Scholar 

  82. Ward WF, Qi W, Van Remmen H, Zackert WE, Roberts LJ, 2nd, and Richardson A (2005). Effects of age and caloric restriction on lipid peroxidation: measurement of oxidative stress by F2-isoprostane levels. J Gerontol A Biol Sci Med Sci 60(7): 847–851.

    PubMed  Google Scholar 

  83. Pamplona R, Barja G, and Portero-Otin M (2002). Membrane fatty acid unsaturation, protection against oxidative stress, and maximum life span: a homeoviscous-longevity adaptation?. Ann NY Acad Sci 959: 475–490.

    Article  CAS  PubMed  Google Scholar 

  84. Stadtman ER (2006). Protein oxidation and aging. Free Radic Res 40(12): 1250–1258.

    Article  CAS  PubMed  Google Scholar 

  85. Dean RT, Fu S, Stocker R, and Davies MJ (1997). Biochemistry and pathology of radical-mediated protein oxidation. Biochem J 324(Pt 1): 1–18.

    CAS  PubMed  Google Scholar 

  86. Thorpe SR and Baynes JW (2003). Maillard reaction products in tissue proteins: new products and new perspectives. Amino Acids 25(3–4): 275–281.

    Article  CAS  PubMed  Google Scholar 

  87. Agarwal S and Sohal RS (1994). Aging and protein oxidative damage. Mech Ageing Dev 75(1): 11–19.

    Article  CAS  PubMed  Google Scholar 

  88. Chao CC, Ma YS, and Stadtman ER (1997). Modification of protein surface hydrophobicity and methionine oxidation by oxidative systems. Proc Natl Acad Sci USA 94(7): 2969–2974.

    Article  CAS  PubMed  Google Scholar 

  89. Carney JM, Starke-Reed PE, Oliver CN, Landum RW, Cheng MS, Wu JF, and Floyd RA (1991). Reversal of age-related increase in brain protein oxidation, decrease in enzyme activity, and loss in temporal and spatial memory by chronic administration of the spin-trapping compound N-tert-butyl-alpha-phenylnitrone. Proc Natl Acad Sci USA 88(9): 3633–3636.

    Article  CAS  PubMed  Google Scholar 

  90. Dubey A, Forster MJ, and Sohal RS (1995). Effect of the spin-trapping compound N-tert-butyl-alpha-phenylnitrone on protein oxidation and life span. Arch Biochem Biophys 324(2): 249–254.

    Article  CAS  PubMed  Google Scholar 

  91. Chaudhuri AR, de Waal EM, Pierce A, Van Remmen H, Ward WF, and Richardson A (2006). Detection of protein carbonyls in aging liver tissue: A fluorescence-based proteomic approach. Mech Ageing Dev 127(11): 849–861.

    Article  CAS  PubMed  Google Scholar 

  92. Jana CK, Das N, and Sohal RS (2002). Specificity of age-related carbonylation of plasma proteins in the mouse and rat. Arch Biochem Biophys 397(2): 433–439.

    Article  CAS  PubMed  Google Scholar 

  93. Agarwal S and Sohal RS (1993). Relationship between aging and susceptibility to protein oxidative damage. Biochem Biophys Res Commun 194(3): 1203–1206.

    Article  CAS  PubMed  Google Scholar 

  94. Sohal RS, Agarwal S, Dubey A, and Orr WC (1993a). Protein oxidative damage is associated with life expectancy of houseflies. Proc Natl Acad Sci USA 90(15): 7255–7259.

    Article  CAS  PubMed  Google Scholar 

  95. Agarwal S and Sohal RS (1996). Relationship between susceptibility to protein oxidation, aging, and maximum life span potential of different species. Exp Gerontol 31(3): 365–372.

    Article  CAS  PubMed  Google Scholar 

  96. Portero-Otin M, Requena JR, Bellmunt MJ, Ayala V, and Pamplona R (2004). Protein nonenzymatic modifications and proteasome activity in skeletal muscle from the short-lived rat and long-lived pigeon. Exp Gerontol 39(10): 1527–1535.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Holly Van Remmen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Shi, Y., Buffenstein, R., Van Remmen, H. (2010). Mitochondria, Oxidative Damage and Longevity: What Can Comparative Biology Teach Us?. In: Wolf, N. (eds) The Comparative Biology of Aging. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3465-6_8

Download citation

Publish with us

Policies and ethics