Skip to main content

Hormonal Influences on Aging and Lifespan

  • Chapter
  • First Online:
Book cover The Comparative Biology of Aging
  • 1144 Accesses

Abstract

This chapter summarizes the present understanding of the role of IGF-1, insulin, and homologous signaling in the control of aging in a worm, C. elegans, a fly, Drosophila melanogaster, in the yeast Saccharomyces cerevisiae, and in the mouse, and identifies some of the known or suspected mechanisms linking the actions of these hormones to longevity. The activities of these hormones and their receptors, and their various effects on metabolism and growth are covered. A discussion of the applicability of these findings among all species investigated, including the human, is also included.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Friedman DB and Johnson TE (1988). A mutation in the age-1 gene in Caenorhabditis elegans lengthens life and reduces hermaphrodite fertility. Genetics Jan 1; 118(1): 75–86.

    CAS  PubMed  Google Scholar 

  2. Jazwinski SM (1996). Longevity, genes, and aging. Science 273(5271): 54–59.

    CAS  PubMed  Google Scholar 

  3. Guarente L (2000). Sir2 links chromatin silencing, metabolism, and aging. Genes Dev May 1; 14(9): 1021–1026.

    CAS  PubMed  Google Scholar 

  4. Kimura KD, Tissenbaum HA, Liu Y, and Ruvkun G (1997). daf-2, an Insulin Receptor-like gene that regulates longevity and diapause in Caenorhabditis elegans. Science Aug 15; 277(5328): 942–946.

    CAS  PubMed  Google Scholar 

  5. Braeckman BP and Vanfleteren JR (2007). Genetic control of longevity in C. elegans. Exp Gerontol 42(1–2): 90–98.

    CAS  PubMed  Google Scholar 

  6. Hu PJ, Dauer (August 08, 2007), WormBook, ed. The C. elegans Research Community, WormBook, doi/10.1895/wormbook.1.144.1, http://www.wormbook.org.

  7. Hu PJ Dauer. WormBook [online review]. 2007;8: 1–19. Available from: http://www.wormbook.org/chapters/www_dauer/dauer.html.

  8. Baumeister R, Schaffitzel E, and Hertweck M (2006). Endocrine signaling in Caenorhabditis elegans controls stress response and longevity. J Endocrinol Aug 1; 190(2): 191–202.

    CAS  PubMed  Google Scholar 

  9. Morris JZ, Tissenbaum HA, and Ruvkun GA (1996). phosphatidylinositol-3-OH kinase family member regulating longevity and diapause in Caenorhabditis elegans. Nature 382(6591): 536–539.

    CAS  PubMed  Google Scholar 

  10. Ogg S, Paradis S, Gottlieb S, Patterson GI, Lee L, Tissenbaum HA et al. (1997). The Fork head transcription factor DAF-16 transduces insulin-like metabolic and longevity signals in C. elegans. Nature 389(6654): 994–999.

    CAS  PubMed  Google Scholar 

  11. Lin K, Dorman JB, Rodan A, and Kenyon C (1997). daf-16: An HNF-3/forkhead family member that can function to double the life-span of Caenorhabditis elegans. Science Nov 14; 278(5341): 1319–1322.

    CAS  PubMed  Google Scholar 

  12. Salih DAM and Brunet A (2008). FoxO transcription factors in the maintenance of cellular homeostasis during aging. Curr Opin Cell Biol 20(2): 126–136.

    CAS  PubMed  Google Scholar 

  13. Gami MS and Wolkow CA (2006). Studies of Caenorhabditis elegans DAF-2/insulin signaling reveal targets for pharmacological manipulation of lifespan. Aging Cell 5(1): 31–37.

    CAS  PubMed  Google Scholar 

  14. Hertweck M, Göbel C, and Baumeister RC (2004). elegans SGK-1 is the critical component in the Akt/PKB kinase complex to control stress response and life span. Dev Cell 6(4): 577–588.

    CAS  PubMed  Google Scholar 

  15. Skorokhod A, Gamulin V, Gundacker D, Kavsan V, Muller IM, and Muller WEG (1999). Origin of insulin receptor-like tyrosine kinases in marine sponges. Biol Bull Oct 1; 197(2): 198–206.

    CAS  PubMed  Google Scholar 

  16. Leevers SJ, Weinkov D, MacDougall LK, Hafen E, and Waterfield MD (1996). Drosophila phosphoinositide 2-kinase Dp110 promotes cell growth. EMBO J Dec 2; 15(23): 6584–6594.

    CAS  PubMed  Google Scholar 

  17. Wijchers PJEC, Burbach JPH, and Smidt MP (2006). In control of biology: Of mice, men and foxes. Biochem J Jul 15; 397(2): 233–246.

    CAS  PubMed  Google Scholar 

  18. Piper MD, Selman C, McElwee JJ, and Partridge L (2008). Separating cause from effect: How does insulin/IGF signalling control lifespan in worms, flies and mice? J Intern Med 263(2): 179–191.

    CAS  PubMed  Google Scholar 

  19. Brogiolo W, Stocker H, Ikeya T, Rintelen F, Fernandez R, and Hafen E (2001). An evolutionarily conserved function of the Drosophila insulin receptor and insulin-like peptides in growth control. Curr Biol 11(4): 213–221.

    CAS  PubMed  Google Scholar 

  20. Paradis S and Ruvkun G (1998). Caenorhabditis elegans Akt/PKB transduces insulin receptor-like signals from AGE-1 PI3 kinase to the DAF-16 transcription factor. Genes Dev Aug 15; 12(16): 2488–2498.

    CAS  PubMed  Google Scholar 

  21. Rincon M, Muzumdar R, Atzmon G, and Barzilai N (2004). The paradox of the insulin/IGF-1 signaling pathway in longevity. Mech Ageing Dev 125(6): 397–403.

    CAS  PubMed  Google Scholar 

  22. Klass MR (1983). A method for the isolation of longevity mutants in the nematode Caenorhabditis elegans and initial results. Mech Ageing Dev Jul–Aug; 22(3–4): 279–286.

    CAS  PubMed  Google Scholar 

  23. Ayyadevara S, Alla R, Thaden JJ, and Shmookler RRJ (2008). Remarkable longevity and stress resistance of nematode PI3K-null mutants. Aging Cell 7(1): 13–22.

    CAS  PubMed  Google Scholar 

  24. Rottiers V and Antebi A (2006). Control of Caenorhabditis elegans life history by nuclear receptor signal transduction. Exp Gerontol Oct; 41(10): 904–909.

    CAS  PubMed  Google Scholar 

  25. Kenyon C, Chang J, Gensch E, Rudner A, and Tabtiang RAC (1993). Elegans mutant that lives twice as long as wild type. Nature 366(6454): 461–464.

    CAS  PubMed  Google Scholar 

  26. Hamilton B, Dong Y, Shindo M, Liu W, Odell I, Ruvkun G et al. (2005). A systematic RNAi screen for longevity genes in C. elegans. Genes Dev Jul 1; 19(13): 1544–1555.

    CAS  PubMed  Google Scholar 

  27. Lin K, Hsin H, Libina N, and Kenyon C (2001). Regulation of the Caenorhabditis elegans longevity protein DAF-16 by insulin/IFG-1 and germline signaling. Nat Genet 28(2): 139–145.

    CAS  PubMed  Google Scholar 

  28. Apfeld J, O’Connor G, McDonagh T, DiStefano PS, and Curtis R (2004). The AMP-activated protein kinase AAK-2 links energy levels and insulin-like signals to lifespan in C. elegans. Genes Dev Dec 15; 18(24): 3004–3009.

    CAS  PubMed  Google Scholar 

  29. Curtis R, O’Connor G, and DiStefano PS (2006). Aging networks in Caenorhabditis elegans: AMP-activated protein kinase (aak-2) links multiple aging and metabolism pathways. Aging Cell 5(2): 119–126.

    CAS  PubMed  Google Scholar 

  30. Apfeld J and Kenyon C (1998). Cell nonautonomy of C. elegans daf-2 function in the regulation of diapause and life span. Cell 95(2): 199–210.

    CAS  PubMed  Google Scholar 

  31. Wolkow CA, Kimura KD, Lee M-S, and Ruvkun G (2000). Regulation of C. elegans life-span by insulinlike signaling in the nervous system. Science Oct 6; 290(5489): 147–150.

    CAS  PubMed  Google Scholar 

  32. Ailion M, Inoue T, Weaver CI, Holdcraft RW, and Thomas JH (1999). Neurosecretory control of aging in Caenorhabditis elegans. Proc Natl Acad Sci USA Jun 22; 96(13): 7394–7397.

    CAS  PubMed  Google Scholar 

  33. Libina N, Berman JR, and Kenyon C (2003). Tissue-specific activities of C. elegans DAF-16 in the regulation of lifespan. Cell 115(4): 489–502.

    CAS  PubMed  Google Scholar 

  34. Hsin H and Kenyon C (1999). Signals from the reproductive system regulate the lifespan of C. elegans. Nature 399(6734): 362–366.

    CAS  PubMed  Google Scholar 

  35. Apfeld J and Kenyon C (1999). Regulation of lifespan by sensory perception in Caenorhabditis elegans. Nature Dec 16; 402(6763): 804–809.

    CAS  PubMed  Google Scholar 

  36. Dillin A, Crawford DK, and Kenyon C (2002). Timing requirements for insulin/IGF-1 signaling in C. elegans. Science Oct 25; 298(5594): 830–834.

    CAS  PubMed  Google Scholar 

  37. Lin Y-J, Seroude L, and Benzer S (1998). Extended life-span and stress resistance in the Drosophila mutant Methuselah. Science Oct 30; 282(5390): 943–946.

    CAS  PubMed  Google Scholar 

  38. Tatar M, Kopelman A, Epstein D, Tu MP, Yin CM, and Garofalo RS (2001). A mutant Drosophila insulin receptor homolog that extends life-span and impairs neuroendocrine function. Science Apr 6; 292(5514): 107–110.

    CAS  PubMed  Google Scholar 

  39. Clancy D, Gems D, Harshman LG, Oldham S, Hafen E, Leevers SJ et al. (2001). Extension of lifespan by loss of chico, a Drosophila insulin receptor substrate protein. Science 292: 104–106.

    CAS  PubMed  Google Scholar 

  40. Gems D, Sutton AJ, Sundermeyer ML, Albert PS, King KV, Edgley ML et al. (1998). Two pleiotropic classes of daf-2 mutation affect larval arrest, adult behavior, reproduction and longevity in Caenorhabditis elegans. Genetics Sep 1; 150(1): 129–155.

    CAS  PubMed  Google Scholar 

  41. Tu M-P, Epstein D, and Tatar M (2002). The demography of slow aging in male and female Drosophila mutant for the insulin-receptor substrate homologue chico. Aging Cell 1(1): 75–80.

    CAS  PubMed  Google Scholar 

  42. Giannakou ME and Partridge L (2007). Role of insulin-like signalling in Drosophila lifespan. Trends Biochem Sci 32(4): 180–188.

    CAS  PubMed  Google Scholar 

  43. Hwangbo DS, Gersham B, Tu M-P, Palmer M, and Tatar M (2004). Drosophila dFOXO controls lifespan and regulates insulin signalling in brain and fat body. Nature 429(6991): 562–566.

    CAS  PubMed  Google Scholar 

  44. Giannakou ME, Goss M, Jacobson J, Vinti G, Leevers SJ, and Partridge L (2007). Dynamics of the action of dFOXO on adult mortality in Drosophila. Aging Cell 6(4): 429–438.

    CAS  PubMed  Google Scholar 

  45. Broughton SJ, Piper MDW, Ikeya T, Bass TM, Jacobson J, Driege Y et al. (2005). Longer lifespan, altered metabolism, and stress resistance in Drosophila from ablation of cells making insulin-like ligands. Proc Natl Acad Sci U S A Feb 22; 102(8): 3105–3110.

    CAS  PubMed  Google Scholar 

  46. Flatt T, Min K-J, D’Alterio C, Villa-Cuesta E, Cumbers J, Lehmann R et al. (2008). Drosophila germ-line modulation of insulin signaling and lifespan. Proc Natl Acad Sci U S A Apr 29; 105(17): 6368–6373.

    CAS  PubMed  Google Scholar 

  47. Wu Q and Brown MR (2006). Signaling and function of insulin-like peptides in insects. Ann Rev Entomol 51(1): 1–24.

    CAS  Google Scholar 

  48. Arpagaus M (1987). Vertebrate insulin induces diapause termination in Pieris brassicae pupae. Roux’s Arch Dev Biol 196: 527–530.

    CAS  Google Scholar 

  49. Dixit PK and Patel NG (1964). Insulin-like activity in larval foods of the honeybee. Nature 202: 189–190.

    CAS  PubMed  Google Scholar 

  50. Corona M, Velarde RA, Remolina S, Moran-Lauter A, Wang Y, Hughes KA et al. (2007). Vitellogenin, juvenile hormone, insulin signaling, and queen honey bee longevity. Proc Natl Acad Sci U S A Apr 24; 104(17): 7128–7133.

    CAS  PubMed  Google Scholar 

  51. Wheeler DE, Buck N, and Evans JD (2006). Expression of insulin pathway genes during the period of caste determination in the honey bee, Apis mellifera. Insect Mol Biol 15(5): 597–602.

    CAS  PubMed  Google Scholar 

  52. Lin SJ, Defossez PA, and Guarente L (2000). Requirement of NAD and SIR2 for life-span extension by calorie restriction in Saccharomyces cerevisiae. Science Sep 22; 289(5487): 2126–2128.

    CAS  PubMed  Google Scholar 

  53. Fabrizio P, Pozza F, Pletcher SD, Gendron CM, and Longo VD (2001). Regulation of longevity and stress resistance by Sch9 in yeast. Science Apr 13; 292(5515): 288–290.

    CAS  PubMed  Google Scholar 

  54. Kaeberlein M, Kirkland KT, Fields S, and Kennedy BK (2005). Genes determining yeast replicative life span in a long-lived genetic background. Mech Ageing Dev 126(4): 491–504, Apr.Epub 2005Jan 7.

    CAS  PubMed  Google Scholar 

  55. Longo VD (1999). Mutations in signal transduction proteins increase stress resistance and longevity in yeast, nematodes, fruit flies, and mammalian neuronal cells. Neurobiol Aging Sep–Oct; 20(5): 479–486.

    CAS  PubMed  Google Scholar 

  56. Fabrizio P, Liou LL, Moy VN, Diaspro A, Valentine JS, Gralla EB, and Longo VD (2003). SOD2 functions downstream of Sch9 to extend longevity in yeast. Genetics Jan; 163(1): 35–46.

    CAS  PubMed  Google Scholar 

  57. Sun J, Kale SP, Childress AM, Pinswasdi C, and Jazwinski SM (1994). Divergent roles of RAS1 and RAS2 in yeast longevity. J Biol Chem Jul 15; 269(28): 18638–18645.

    CAS  PubMed  Google Scholar 

  58. Thevelein JM and de Winde JH (1999). Novel sensing mechanisms and targets for the cAMP-protein kinase A pathway in the yeast Saccharomyces cerevisiae. Mol Microbiol Sep; 33(5): 904–918.

    CAS  PubMed  Google Scholar 

  59. Brown-Borg HM, Borg KE, Meliska CJ, and Bartke A (1996). Dwarf mice and the ageing process. Nature 384: 33.

    CAS  PubMed  Google Scholar 

  60. Quaife CJ, Mathews LS, Pinkert CA, Hammer RE, Brinster RL, and Palmiter RD (1989). Histopathology associated with elevated levels of growth hormone and insulin-like growth factor I in transgenic mice. Endocrinology 124: 40–48.

    CAS  PubMed  Google Scholar 

  61. Wolf E, Kahnt E, Ehrlein J, Hermanns W, Brem G, and Wanke R (1993). Effects of long-term elevated serum levels of growth hormone on life expectancy of mice: Lessons from transgenic animal models. Mech Ageing Dev 68: 71–87.

    CAS  PubMed  Google Scholar 

  62. Coschigano KT, Clemmons D, Bellush LL, and Kopchick JJ (2000). Assessment of growth parameters and life span of GHR/BP gene-disrupted mice. Endocrinology 141: 2608–2623.

    CAS  PubMed  Google Scholar 

  63. Coschigano KT, Holland AN, Riders ME, List EO, Flyvbjerg A, and Kopchick JJ (2003). Deletion, but not antagonism, of the mouse growth hormone receptor results in severely decreased body weights, insulin, and insulin-like growth factor I levels and increased life span. Endocrinology 144: 3799–3810.

    CAS  PubMed  Google Scholar 

  64. Flurkey K, Papaconstantinou J, Miller RA, and Harrison DE (2001). Lifespan extension and delayed immune and collagen aging in mutant mice with defects in growth hormone production. Proc Natl Acad Sci U S A 98: 6736–6741.

    CAS  PubMed  Google Scholar 

  65. Bartke A, Chandrashekar V, Bailey B, Zaczek D, and Turyn D (2002). Consequences of growth hormone (GH) overexpression and GH resistance. Neuropeptides 36: 201–208.

    CAS  PubMed  Google Scholar 

  66. Bartke A, Peluso MR, Moretz N, Wright C, Bonkowski M, Winters TA et al. (2004). Effects of soy-derived diets on plasma and liver lipids, glucose tolerance, and longevity in normal, long-lived and short-lived mice. Horm Metab Res 36: 550–558.

    CAS  PubMed  Google Scholar 

  67. Bonkowski MS, Rocha JS, Masternak MM, Al-Regaiey KA, and Bartke A (2006). Targeted disruption of growth hormone receptor interferes with the beneficial actions of calorie restriction. Proc Natl Acad Sci U S A 103: 7901–7905.

    CAS  PubMed  Google Scholar 

  68. Vergara M, Smith-Wheelock M, Harper JM, Sigler R, and Miller RA (2004). Hormone-treated Snell dwarf mice regain fertility but remain long lived and disease resistant. J Gerontol A Biol Sci Med Sci 59: 1244–1250.

    PubMed  Google Scholar 

  69. Roberts RC (1961). The lifetime growth and reproduction of selected strains of mice. Heredity 16: 369–381.

    Google Scholar 

  70. Eklund J and Bradford CE (1977). Longevity and lifetime body weight in mice selected for rapid growth. Nature 265: 48–49.

    CAS  PubMed  Google Scholar 

  71. Rollo CD (2002). Growth negatively impacts the life span of mammals. Evol Dev 4: 55–61.

    PubMed  Google Scholar 

  72. Miller RA, Harper JM, Galecki A, and Burke DT (2002). Big mice die young: Early life body weight predicts longevity in genetically heterogeneous mice. Aging Cell 1: 22–29.

    CAS  PubMed  Google Scholar 

  73. Silberberg R (1972). Articular aging and osteoarthrosis in dwarf mice. Pathol Microbiol (Basel) 38: 417–430.

    CAS  Google Scholar 

  74. Ikeno Y, Bronson RT, Hubbard GB, Lee S, and Bartke A (2003). Delayed occurrence of fatal neoplastic diseases in Ames dwarf mice: Correlation to extended longevity. J Gerontol A Biol Sci Med Sci 58A: 291–296.

    Google Scholar 

  75. Kinney BA, Coschigano KT, Kopchick JJ, and Bartke A (2001a). Evidence that age-induced decline in memory retention is delayed in growth hormone resistant GH-R-KO (Laron) mice. Physiol Behav 72: 653–660.

    CAS  PubMed  Google Scholar 

  76. Kinney BA, Meliska CJ, Steger RW, and Bartke A (2001b). Evidence that Ames dwarf mice age differently from their normal siblings in behavioral and learning and memory parameters. Horm Behav 39: 277–284.

    CAS  PubMed  Google Scholar 

  77. Kinney-Forshee B, Kinney N, Steger R, and Bartke A (2004). Could a deficiency in growth hormone signaling be beneficial to the aging brain? Physiol Behav 80: 589–594.

    CAS  PubMed  Google Scholar 

  78. Sonntag WE, Carter CS, Ikeno Y, Ekenstedt K, Carlson CS, Loeser RF et al. (2005). Adult-onset growth hormone and insulin-like growth factor I deficiency reduces neoplastic disease, modifies age-related pathology, and increases life span. Endocrinology 146: 2920–2932.

    CAS  PubMed  Google Scholar 

  79. Shimokawa I, Higami Y, Utsuyama M, Tuchiya T, Komatsu T, Chiba T, and Yamaza H (2002). Lifespan extension by reduction of the growth hormone-insulin-like growth factor-1 axis: Relation to caloric restriction. Am J Pathol 160: 2259–2265.

    CAS  PubMed  Google Scholar 

  80. Patronek GJ, Waters DJ, and Glickman LT (1997). Comparative longevity of pet dogs and humans: Implications for gerontology research. J Gerontol A Biol Sci Med Sci 52A: B171–B178.

    Google Scholar 

  81. Greer KA, Canterberry SC, and Murphy KE (2007). Statistical analysis regarding the effects of height and weight on life span of the domestic dog. Res Vet Sci 82: 208–214.

    PubMed  Google Scholar 

  82. Sutter NB, Bustamante CD, Chase K, Gray MM, Zhao K, Zhu L et al. (2007). A single IGF1 allele is a major determinant of small size in dogs. Science Apr 6; 316(5821): 112–115.

    CAS  PubMed  Google Scholar 

  83. Eigenmann JE, Amador A, and Patterson DF (1988). Insulin-like growth factor I levels in proportionate dogs, chondrodystrophic dogs and in giant dogs. Acta Endocrinol (Copenh) May; 118(1): 105–108.

    CAS  Google Scholar 

  84. Samaras TT (2007). Human Body Size and the Laws of Scaling: Physiological, Performance, Growth, Longevity and Ecological Ramifications, 1st ed. New York: Nova Science Publishers, Inc.

    Google Scholar 

  85. Samaras TT (2009). Should we be concerned over increasing body height and weight? Exp Gerontol Jan–Feb; 44(1–2): 83–92.

    PubMed  Google Scholar 

  86. Tretli S (1989). Height and weight in relation to breast cancer morbidity and mortality. A prospective study of 570,000 women in Norway. Int J Cancer 44: 23–30.

    CAS  PubMed  Google Scholar 

  87. Gunnell D, Okasha M, Davey Smith G, Oliver SE, Sandhu J, and Holly JMP (2001). Height, leg length, and cancer risk: A systematic review. Epidemiol Rev 23: 313–342.

    CAS  PubMed  Google Scholar 

  88. Littman AJ, White E, and Kristal AR (2007). Anthropometrics and prostate cancer risk. Am J Epidemiol 165: 1271–1279.

    PubMed  Google Scholar 

  89. S. Austad (2010) Animal size, metabolic rate, and survival, among and within species. In Comparative Biology of Aging N.S. Wolf (Ed.) Springer: Dordrecht.

    Google Scholar 

  90. Krzisnik C, Kolacio Z, Battelino T, Brown M, Parks JS, and Laron Z (1999). The “Little People” of the island of Krk – revisited. Etiology of hypopituitarism revealed. J Endo Gen 1: 9–19.

    Google Scholar 

  91. Laron Z (2005). Do deficiencies in growth hormone and insulin-like growth factor-1 (IGF-1) shorten or prolong longevity? Mech Ageing Dev 126: 305–307.

    CAS  PubMed  Google Scholar 

  92. Besson A, Salemi S, Gallati S, Jenal A, Horn R, Mullis PS, and Mullis PE (2003). Reduced longevity in untreated patients with isolated growth hormone deficiency. J Clin Endocrinol Metab 88: 3664–3667.

    CAS  PubMed  Google Scholar 

  93. Menezes Oliveira JL, Marques-Santos C, Barreto-Filho JA, Ximenes Filho R, de Oliveira Britto AV, Oliveira Souza AH et al. (2006). Lack of evidence of premature atherosclerosis in untreated severe isolated growth hormone (GH) deficiency due to a GH-releasing hormone receptor mutation. J Clin Endocrinol Metab 91: 2093–2099.

    PubMed  Google Scholar 

  94. Shevah O and Laron Z (2007). Patients with congenital deficiency of IGF-I seem protected from the development of malignancies: A preliminary report. Growth Horm IGF Res 17: 54–57.

    CAS  PubMed  Google Scholar 

  95. Bielschowsky F and Bielschowsky M (1961). Carcinogenesis in the pituitary of dwarf mouse. The response to dimethylbenzanthracene applied to the skin. Br J Cancer 15: 257–262.

    Google Scholar 

  96. Wang Z, Prins GS, Coschigano KT, Kopchick JJ, Green JE, Ray VH et al. (2005). Disruption of growth hormone signaling retards early stages of prostate carcinogenesis in the C3(1)/T antigen mouse. Endocrinology 146: 5188–5196.

    CAS  PubMed  Google Scholar 

  97. Sharp ZD and Bartke A (2005). Evidence for down-regulation of phosphoinositide 3-kinase/Akt/mammalian target of rapamycin (PI3K/Akt/mTOR)-dependent translation regulatory signaling pathways in Ames dwarf mice. J Gerontol A Biol Sci Med Sci 60: 293–300.

    PubMed  Google Scholar 

  98. Kapahi P, Zid BM, Harper T, Koslover D, Sapin V, and Benzer S (2004). Regulation of lifespan in Drosophila by modulation of genes in the TOR signaling pathway. Curr Biol May 25; 14(10): 885–890.

    CAS  PubMed  Google Scholar 

  99. Vellai T, Takacs-Vellai K, Zhang Y, Kovacs AL, Orosz L, and Muller F (2003). Genetics: Influence of TOR kinase on lifespan in C. elegans. Nature 426(6967): 620.

    CAS  PubMed  Google Scholar 

  100. Al-Regaiey KA, Masternak MM, Bonkowski M, Sun L, and Bartke A (2005). Long-lived growth hormone receptor knockout mice: Interaction of reduced insulin-like growth factor 1/insulin signaling and caloric restriction. Endocrinology 146: 851–860.

    CAS  PubMed  Google Scholar 

  101. Wang Z, Masternak MM, Al-Regaiey KA, and Bartke A (2006). The regulation of fat metabolism in Ames dwarf mice, In 59th Annual Scientific Meeting, Dallas, TX: The Gerontological Society of America.

    Google Scholar 

  102. Nilsson L, Binart N, Bohlooly YM, Bramnert M, Egecioglu E, Kindblom J et al. (2005). Prolactin and growth hormone regulate adiponectin secretion and receptor expression in adipose tissue. Biochem Biophys Res Commun 331: 1120–1126.

    CAS  PubMed  Google Scholar 

  103. Borg KE, Brown-Borg HM, and Bartke A (1995). Assessment of the primary adrenal cortical and pancreatic hormone basal levels in relation to plasma glucose and age in the unstressed Ames dwarf mouse. Proc Soc Exp Biol Med 210: 126–133.

    CAS  PubMed  Google Scholar 

  104. Parsons JA, Bartke A, and Sorenson RL (1995). Number and size of islets of Langerhans in pregnant, human growth hormone-expressing transgenic, and pituitary dwarf mice: Effect of lactogenic hormones. Endocrinology 136: 2013–2021.

    CAS  PubMed  Google Scholar 

  105. Zhou Y, Xu BC, Maheshwari HG, He L, Reed M, Lozykowski M et al. (1997). A mammalian model for Laron syndrome produced by targeted disruption of the mouse growth hormone receptor/ binding protein gene (the Laron mouse. Proc Nat Acad Sci USA 94: 13215–13220.

    CAS  PubMed  Google Scholar 

  106. Liu J-L, Coschigano KT, Robertson K, Lipsett M, Guo Y, Kopchick JJ, Kumar U, and Liu YL (2004). Disruption of growth hormone receptor gene causes diminished pancreatic islet size and increased insulin sensitivity in mice. Am J Physiol Endocrinol Metab 287: E405–E413.

    CAS  PubMed  Google Scholar 

  107. Brown-Borg H, Johnson W, Rakoczy S, and Romanick M (2001). Mitochondrial oxidant generation and oxidative damage in Ames dwarf and GH transgenic mice. J Amer Aging Assoc 24: 85–96.

    CAS  Google Scholar 

  108. Brown-Borg HM, Rakoczy SG, Sharma S, and Bartke A (2009). Long-living growth hormone receptor knockout mice: Potential mechanisms of altered stress resistance. Exp Gerontol 44(1–2): 10–19.

    CAS  PubMed  Google Scholar 

  109. Bartke A, Brown-Borg H, Mattison J, Kinney B, Hauck S, and Wright C (2001). Prolonged longevity of hypopituitary dwarf mice. Exp Gerontol 36: 21–28.

    CAS  PubMed  Google Scholar 

  110. Bartke A, Wright JC, Mattison JA, Ingram DK, Miller RA, and Roth GS (2001). Longevity: Extending the lifespan of long-lived mice. Nature 414: 412.

    CAS  PubMed  Google Scholar 

  111. Bokov AF (2008). The role of somatotropic and estrogen signaling in longevity and resistance to oxidative stress. San Antonio, TX: University of Texas Health Science Center at San Antonio.

    Google Scholar 

  112. Murakami S, Salmon A, and Miller R (2003). Multiplex stress resistance in cells from long-lived dwarf mice. FASEB 17: 1565–1566.

    CAS  Google Scholar 

  113. Salmon AB, Murakami S, Bartke A, Kopchick J, Yasumura K, and Miller RA (2005). Fibroblast cell lines from young adult mice of long-lived mutant strains are resistant to multiple forms of stress. Am J Physiol Endocrinol Metab 289: E23–E29.

    CAS  PubMed  Google Scholar 

  114. Dominici FP, Cifone D, Bartke A, and Turyn D (1999). Loss of sensitivity to insulin at early events of the insulin signaling pathway in the liver of growth hormone-transgenic mice. J Endocrinol Jun 1; 161(3): 383–392.

    CAS  PubMed  Google Scholar 

  115. Wang Z, Masternak MM, Al-Regaiey KA, and Bartke A (2007). Adipocytokines and the regulation of lipid metabolism in growth hormone transgenic and calorie-restricted mice. Endocrinology 148: 2845–2853.

    CAS  PubMed  Google Scholar 

  116. Jadresic A, Banks LM, Child DF, Diamant L, Doyle FH, Fraser TR, and Joplin GF (1982). The acromegaly syndrome. Quart J Med 202: 189–204.

    Google Scholar 

  117. Orme SM, McNally RJQ, Cartwright RA, and Belchetz PE (1998). Mortality and cancer incidence in acromegaly: A retrospective cohort study. J Clin Endocrinol Metab 83: 2730–2734.

    CAS  PubMed  Google Scholar 

  118. Holzenberger M, Dupont J, Ducos B, Leneuve P, Geloen A, Evens P, Cervera P, and LeBouc YIGF- (2003). 1 receptor regulates lifespan and resistance to oxidative stress in mice. Nature 421: 182–187.

    CAS  PubMed  Google Scholar 

  119. Sell C and Lorenzini S (2007). Aging in IGF-1 hypomorphic mice, In The American Aging Association 36th Annual Meeting, San Antonio, TX: American Aging Association.

    Google Scholar 

  120. Conover CA and Bale LK (2007). Loss of pregnancy-associated plasma protein A extends lifespan in mice. Aging Cell 6: 727–729.

    CAS  PubMed  Google Scholar 

  121. Boldt HB and Conover CA (2007). Pregnancy-associated plasma protein-A (PAPP-A): A local regulator of IGF bioavailability through cleavage of IGFBPs. Growth Horm IGF Res 17(1): 10–18.

    CAS  PubMed  Google Scholar 

  122. Blüher M, Kahn B, and Kahn CR (2003). Extended longevity in mice lacking the insulin receptor in adipose tissue. Science 299: 572–574.

    PubMed  Google Scholar 

  123. Masoro EJ (2003). A forum for commentaries on recent publications. FIRKO mouse report: Important new model—but questionable interpretation. J Gerontol A Biol Sci Med Sci 58: B.

    Google Scholar 

  124. Russell SJ and Kahn CR (2007). Endocrine regulation of ageing. Nat Rev Mol Cell Biol 8(9): 681–691.

    CAS  PubMed  Google Scholar 

  125. Berryman DE, List EO, Coschigano KT, Behar K, Kim JK, and Kopchick JJ (2004). Comparing adiposity profiles in three mouse models with altered GH signaling. Growth Horm IGF Res 14: 309–318.

    CAS  PubMed  Google Scholar 

  126. Katic M, Kennedy AR, Leykin I, Norris A, McGettrick A, Gesta S, Russell SJ, Bluher M, Maratos-Flier E, and Kahn CR (2007). Mitochondrial gene expression and increased oxidative metabolism: Role in increased lifespan of fat-specific insulin receptor knock-out mice. Aging Cell 6: 827–839.

    CAS  PubMed  Google Scholar 

  127. Buffenstein R, Kang J, and Biney A (2007). Glucose tolerance and insulin sensitivity in an extremely long-living rodent, the naked mole-rat. FASEB J Apr 1; 21(6): A1423-c-.

    Google Scholar 

  128. McCurdy CE and Cartee GD (2005). Akt2 is essential for the full effect of calorie restriction on insulin-stimulated glucose uptake in skeletal muscle. Diabetes 54: 1349–1356.

    CAS  PubMed  Google Scholar 

  129. Selman C, Lingard S, Choudhury AI, Batterham RL, Claret M, Clements M et al. (2008). Evidence for lifespan extension and delayed age-related biomarkers in insulin receptor substrate 1 null mice. FASEB J 22(3): 807–818, fj.07-9261com.

    CAS  PubMed  Google Scholar 

  130. Taguchi A, Wartschow LM, and White MF (2007). Brain IRS2 signaling coordinates life span and nutrient homeostasis. Science Jul 20; 317(5836): 369–372.

    CAS  PubMed  Google Scholar 

  131. Sonntag WE, Xu X, Ingram RL, and D’Costa A (1995). Moderate caloric restriction alters the subcellular distribution of somatostatin mRNA and increases growth hormone pulse amplitude in aged animals. Neuroendocrinology 61: 601–608.

    CAS  PubMed  Google Scholar 

  132. Redman LM, Martin CK, Williamson DA, and Ravussin E (2008). Effect of caloric restriction in non-obese humans on physiological, psychological and behavioral outcomes. Physiol Behav 94: 643–648.

    CAS  PubMed  Google Scholar 

  133. Liu H, Bravata DM, Olkin I, Nayak S, Roberts B, Garber AM, and Hoffman AR (2007). Systematic review: The safety and efficacy of growth hormone in the healthy elderly. Ann Intern Med 146: 104–115.

    PubMed  Google Scholar 

  134. Bartke A (2008). Growth Hormone and Aging: A Challenging Controversy. Clin Interv Aging 3: 659–665.

    Google Scholar 

  135. Shechter M, Ginsberg S, Scheinowitz M, Feinberg MS, and Laron Z (2007). Obese adults with primary growth hormone resistance (Laron Syndrome) have normal endothelial function. Growth Horm IGF Res 17: 165–170.

    CAS  PubMed  Google Scholar 

  136. Bonafe M, Barbieri M, Marchegiani F, Olivieri F, Ragno E, Giampieri C et al. (2003). Polymorphic variants of insulin-like growth factor I (IGF-I) receptor and phosphoinositide 3-kinase genes affect IGF-I plasma levels and human longevity: Cues for an evolutionarily conserved mechanism of life span control. J Clin Endocrinol Metab 88(7): 3299–3304.

    CAS  PubMed  Google Scholar 

  137. Kojima T, Kamei H, Aizu T, Arai Y, Takayama M, Nakazawa S et al. (2004). Association analysis between longevity in the Japanese population and polymorphic variants of genes involved in insulin and insulin-like growth factor 1 signaling pathways. Exp Gerontol 39: 1595–1598.

    CAS  PubMed  Google Scholar 

  138. Suh Y, Atzmon G, Cho M-O, Hwang D, Liu B, Leahy DJ et al. (2008). Functionally significant insulin-like growth factor I receptor mutations in centenarians. Proc Natl Acad Sci U S A 2008 March 4; 105(9): 3438–3442.

    CAS  PubMed  Google Scholar 

  139. McElwee J, Schuster E, Blanc E, Piper M, Thomas J, Patel D et al. (2007). Evolutionary conservation of regulated longevity assurance mechanisms. Genome Biol 8(7): R132.

    PubMed  Google Scholar 

  140. Longo V and Finch C (2003). Evolutionary Medicine: From Dwarf Model Systems to Healthy Centenarians? Science 299(5611): 1342–1346.

    PubMed  Google Scholar 

  141. Barke A (2003). Can growth hormone (GH) accelerate aging? Evidence from GH-transgenic mice. Neuroendocrinology 78: 210–216.

    Google Scholar 

  142. Atzmon G, Pollin TI, Crandall J, Tanner K, Schechter CB, Soherer PE, et al. (2008). Adiponectin levels and genotype: a potential regulator of life span in humans. J Gerontol A Biol Sci Med Sci 63: 447–453.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrzej Bartke .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Spong, A., Bartke, A. (2010). Hormonal Influences on Aging and Lifespan. In: Wolf, N. (eds) The Comparative Biology of Aging. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3465-6_3

Download citation

Publish with us

Policies and ethics